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This dissertation explores the use of machine learning techniques, concentrating 

specifically on genetic algorithms (GAs), for solving beam shaping problems.  In order to 

judge the effectiveness of this optimization-based method, four increasingly difficult 

beam shaping problems are solved.  All four of these problems involve using a Gaussian 

input beam to a uniformly illuminate either spherical or planar surfaces some distance 

away.  A computational method, which builds upon proven ray-tracing techniques, is 

developed for determining irradiance profiles.  This method is the key to quantifying the 

efficacy of a beam shaper in terms of a merit function.  When this merit function is 

coupled with a GA, an optimization technique can be employed.  

The GA is able to find a satisfactory solution for all four cases in a significant but 

reasonable amount of time.  This is particularly interesting since the GA requires little 

(often no) user input once the problem is started.  In fact, in the last example, the GA is 

presented with a very general problem, and is allowed to determine the actual form of 

the system required to solve the problem, much as a human designer would.  These 

examples demonstrate that the GA optimization-based method works, although the first 

two problems presented here can be solved in more general ways using analytical 

methods.  With a general analytical solution, particular cases can be solved rapidly.  

However, the third and fourth examples illustrate two problems of such complexity that 
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analytical methods become difficult, if not impossible, to apply.  The most promising 

applications of GAs lie in these areas.  



Copyrighted Material 

Copyright © 1999 Neal C. Evans 

All rights reserved 

 

DEDICATION 

The light wraps around you in its mortal flame. 

Abstracted pale mourner, standing that way 

Against the old propellers of the twilight 

That revolves around you.1 

 

 

For Finley, for her undying love and support. 

And, for my family, most of all my parents, for providing me with so much.   



Copyrighted Material 

  

v 
Copyright © 1999 Neal C. Evans 

All rights reserved 

 

ACKNOWLEDGEMENTS 

I am grateful to my advisor, Dr. David L. Shealy, for the many hours of personal 

conversation, guidance and teaching.  His example has inspired me to become a better 

student of physics, as well as a better person.  I appreciate his encouraging me to 

pursue those things which excited me, while insuring that I harness these indulgences 

to produce something of value.  I am also most thankful to Dr. Joseph G. Harrison, Dr. 

Yogesh Vohra, Dr. Chris Lawson, Dr. James Buckley and Dr. Ian Knowles for serving 

on my committee and providing me with many fruitful avenues of exploration.  I also 

wish to thank Dr. Vladimir Oliker of the Emory University Department of Mathematics 

and Computer Science, who provided me with my first laser-shaping problem: a two-

mirror reflector.  I also am indebted to Ken Baker of Optimetrix, 13659 Victory Blvd., 

Van Nuys, CA, 91401, with whom I worked to produce the first problem presented in 

this work, the laser shaper/projector system. 

I am thankful for the funding provided to me by the U.S. Department of 

Education‟s GAANN program, which supported my research and tenure at UAB.   Also, 

Optical Research Associates, 3280 E. Foothill Blvd., Pasadena, CA, 91107, has 

generously provided UAB the use of CODE V, an optical design and testing package, for 

research-related endeavors at a substantially discounted educational price.  Without 

CODE V, this work would not have been possible. 



Copyrighted Material 

  

vi 
Copyright © 1999 Neal C. Evans 

All rights reserved 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT OF DISSERTATION ......................................................................................... ii 

DEDICATION ......................................................................................................................... iv 

ACKNOWLEDGEMENTS ..................................................................................................... v 

LIST OF TABLES................................................................................................................ viii 

LIST OF FIGURES ................................................................................................................ ix 

INTRODUCTION .................................................................................................................... 1 

Scope of Applications .................................................................................................. 3 
Computational Methods for Irradiance Calculations via Ray-trace Methods ....... 4 

 

THEORY OF OPTIMIZATION ............................................................................................ 14 

Overview of Iterative Computational Optimization Methods ............................... 14 
Genetic Algorithms ................................................................................................... 16 
Parallelization of the Genetic Algorithm................................................................. 18 

 

APPLICATIONS .................................................................................................................... 24 

Design and Analysis of a Beam Shaper/Projector .................................................. 24 
Design and Analysis of a Two-lens Beam Shaper .................................................. 36 
Design and Analysis of a Gradient-Index Shaper .................................................. 40 
Design and Analysis of a Free-Form GA-Designed GRIN Shaper ....................... 48 

 

CONCLUSIONS .................................................................................................................... 56 

LIST OF REFERENCES ...................................................................................................... 63 

APPENDIX A: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A GRADIENT-

INDEX SHAPER ................................................................................................................... 73 

APPENDIX B: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A FREE-

FORM GA-DESIGNED GRIN SHAPER ............................................................................. 72



Copyrighted Material 

Copyright © 1999 Neal C. Evans 

All rights reserved 

 

TABLE OF CONTENTS (Continued) 

 Page 

APPENDIX C: CODE SAMPLES FROM THE FORTRAN GENETIC ALGORITHM 

DRIVER .................................................................................................................................. 79 

 



Copyrighted Material 

  

viii 
Copyright © 1999 Neal C. Evans 

All rights reserved 

 

LIST OF TABLES 

 Page 

Table 1. Constraints on surface parameters.  Each parameter must be 

between or equal to the end points of the respective constraint. ........................ 30 

Table 2. Beam Shaper/Projector System Parameters. ....................................................... 35 

Table 3. Beam Shaper/Projector Lens Element Parameters ............................................. 35 

Table 4. Two-lens Shaper System Parameters. .................................................................. 40 

Table 5. Two-lens Shaper Lens Element Parameters ........................................................ 40 

Table 6. Gradient-Index Shaper System Parameters. ....................................................... 47 

Table 7. Gradient-Index Shaper Lens Element Parameters ............................................. 48 

Table 8. Optimized Parameters for the Free-Form GA-Designed GRIN 

Shaper problem. ...................................................................................................... 52 

Table 9. Free-Form GA-Designed GRIN Shaper Parameters. .......................................... 56 

Table 10. Free-Form GA-Designed GRIN Shaper Lens Parameters. ........................... 56 

 

 



Copyrighted Material 

  

ix 
Copyright © 1999 Neal C. Evans 

All rights reserved 

 

LIST OF FIGURES 

 Page 

Fig. 1. Illustration of Conservation of Energy with a Bundle of Rays (from 

Ref. 27). ...................................................................................................................... 8 

Fig. 2. Beam expander with Input Plane and Output Surface.  The beam 

profile is shaped to be uniform on the Output Surface (from Ref. 

14). .............................................................................................................................. 9 

Fig. 3. Determination of .idA   From the figure, one can see that 

1   i i id  and that cos( )  out

i i idS d  (from Ref. 14). ............................... 12 

Fig. 4. Example of the genetic material for a single individual.  Values 

(Real*8) for each parameter are converted into binary strings, 

which are in turn concatenated into one long string, the genetic 

material for that individual (from Ref. 14).  Individual alleles (the 

values that 4 10, , , ,c k A A  assume, expressed in binary form) are 

kept intact when crossovers occur. ........................................................................ 19 

Fig. 5. Flowchart of the sequential micro-GA.  For definitions of 

reproduction, mutations, cross-overs and stagnancy see section 0. ................... 20 

Fig. 6. Two parallel GA paradigms.  In the first setup, the standard GA 

paradigm (a), the GA is executed sequentially on the master until 

the step where the merit function is evaluated.  At this point, the 

merit function is evaluated in parallel on the slave nodes.  In the 

second setup, the subpopulation parallel paradigm (b), the GA 

executes normally on several slave machines, which at pre-defined 

time send their best individuals to the integrator.  The integrator 

then redistributes these individuals to the other slave nodes. ........................... 22 

Fig. 7. Beam-shaping system with ray trace showing the density of rays 

increases at the periphery of the Output Surface, as one would 

expect to compensate for the Gaussian nature of the input beam.  

Both the thin lens element and the shaping element are shown.  

The shaping element is determined by the GA (from Ref. 14). ........................... 25 

Fig. 8. Merit function versus   and N .  200N  in this system (from 

Ref. 14). .................................................................................................................... 29 



Copyrighted Material 

Copyright © 1999 Neal C. Evans 

All rights reserved 

 

LIST OF FIGURES (Continued) 

 Page 

Fig. 9. Shaping element showing aspherical surface, which is determined 

by the GA.  The axial thickness of this element is 6 mm (from Ref. 

14). ............................................................................................................................ 32 

Fig. 10. Input beam irradiance profile.  The 
21 e  diameter of the input 

beam is 7.882 mm.  Integrating ( )   over the Input Plane yields 

21.1 units, a quantity which must be conserved according to Eq. 

(13) (from Ref. 14). .................................................................................................. 33 

Fig. 11. Beam profile on Output Surface.  The radius (N ) of the Output 

Surface is 52.5 mm.  The mean value of the profile, u , is 2.13x10-3 

2rays mm , with a standard deviation of 3.78x10-5.  Integrating this 

mean value ( ( ) constant  u u ) over the Output Surface yields a 

value of 20.7 units (from Ref. 14).  The beam profile is radially-

symmetric. ............................................................................................................... 34 

Fig. 12. Two-lens beam shaper system with ray trace.  The right surface of 

Lens 1 and the left surface of Len 2 are shaped by the GA. ............................... 38 

Fig. 13. Input and Output irradiance profiles for the Two-lens Beam 

Shaper.  The 
21 e  diameter of the input beam is 16.0 mm.  

Integrating ( )   over the Input Plane yields 86.9 units.  The 

radius (N ) of the Output Plane is 10.7 mm.  The mean value of 

the profile, u , is 0.242
2rays mm , with a standard deviation of 

1.86x10-3 rays/mm2, or 0.8% of u .  Integrating this mean value (

( ) constant  u u ) over the Output Surface yields a value of 87.0 

units.  Energy is conserved, as required in Eq. (13). ........................................... 39 

Fig. 14. Layout of the gradient-index expander designed by Wang and 

Shealy (from Ref. 17).  This system provides the inspiration for the 

Gradient-Index Shaper problem. ........................................................................... 42 

Fig. 15. Gradient-index shaper system with ray trace.  The materials for 

Lens 1 and Lens 2 were chosen from a catalog of materials by the 

GA. ........................................................................................................................... 45 

ZEqnNum199495


Copyrighted Material 

  

xi 
Copyright © 1999 Neal C. Evans 

All rights reserved 

 

LIST OF FIGURES (Continued) 

 Page 

Fig. 16. Input and Output irradiance profiles for the Gradient-Index 

Shaper.  The 
21 e  radius of the input beam is 4.0 mm.  Integrating 

( )   over the Input Plane yields 21.7 units.  The radius (N ) of 

the Output Plane is 7.56 mm.  The mean value of the profile, u , is 

0.121
2rays mm , with a standard deviation of 4.45x10-3.  

Integrating this mean value ( ( ) constant  u u ) over the Output 

Surface yields a value of 21.7 units.  Energy is conserved, as 

required in Eq. (13). ................................................................................................ 46 

Fig. 17. A plot showing the best individual in a generation, bestM , as a 

function of generation.  bestM  is measured in arbitrary units.  When 

bestM  „plateaus‟ for a significant number of generations, it can be 

assumed that the best solution has been found. .................................................. 53 

Fig. 18. Raytrace for the Free-Form GA-Designed GRIN Shaper system.  

The GA produced a system with 3 elements and no connectors. ........................ 54 

Fig. 19. Input and Output irradiance profiles for the Free-Form GA-

Designed GRIN Shaper.  The 
21 e  radius of the input beam is 4.0 

mm.  Integrating ( )   over the Input Plane yields 21.7 units.  The 

radius (N ) of the Output Plane is 12.4 mm.  The mean value of 

the profile, u , is 
-2 24.55 10  rays mm , with a standard deviation 

of 
31.70 10 , or 3.7% of u .  Integrating this mean value (

( ) constant  u u ) over the Output Surface yields a value of 21.9 

units.  Energy is conserved as required in Eq. (13). ............................................ 55 



Copyrighted Material 

  

Copyright © 1999 Neal C. Evans 

All rights reserved 

 

 INTRODUCTION 

Recently, the application of machine learning techniques including Neural 

Networks and Genetic Algorithms (GAs) to optimization problems has blossomed.  Such 

techniques hold great promise not only because of their extraordinary efficiency and 

flexibility but also because they potentially allow the solution of previously intractable 

problems.  So long as a fitness landscape2 can be well-defined, a GA can be unleashed to 

roam this territory in a incessant search for the best solution.  The GA must not, 

however, be characterized as a mindless automaton that wanders aimlessly about this 

terrain.  Indeed, the essence of its value lies in the fact that the “...genetic algorithm 

[can] yield computer-based complex adaptive systems that can evolve strategies that no 

human being ever devised.”3 

Though there are numerous variations of GAs, they all share a central theme: 

their search strategy borrows concepts from natural selection and genetics.4  Once 

presented with a specific optimization problem, the GA produces a set of potential 

solutions.  These solutions are referred to as „organisms‟  and a set of organisms is a 

„generation.‟  GAs typically start with a randomly distributed seed generation, (0).G   

For each generation ( )G t , a new generation, ( 1)G t  is produced based on the 

strengths and weaknesses of ( ).G t   Organisms are represented by a single string, or 

chromosome, which is built from the values of the parameters to be optimized for a 

particular problem.5  These techniques endow GAs with several unique features, as 

described by Goldberg:6 
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1. GAs work with a coding of the parameter set, not with the parameters 

themselves. 

2. GAs search from a population of points, not a single point. 

3. GAs use payoff …[merit function] information only, not derivatives or other 

auxiliary knowledge. 

4. GAs use probabilistic transitions rules, not deterministic rules. 

 

This evokes the intriguing thought of employing GAs to find solutions to 

problems in optics and optical design where analytical methods are difficult to apply 

and other optimization techniques are extremely inefficient or fail to yield good 

solutions altogether.  As a first step, one must develop a GA optimization method and 

apply it to several well-understood problems.  The key to this “proof-of-principle” stage 

lies in the fact that these problems have been attacked from a number of different 

perspectives.  Not only does this provide a basis for judging the efficiency of the GA 

relative to other optimization techniques, but also this answers to the fundamental 

question “Does this method work?” For the applications presented herein, a GA method 

is developed that can be used to design laser beam-shaping systems that convert 

Gaussian input irradiance profiles to other specified profiles, typically uniform output 

profiles.   

The laser beam-shaping system problem can be solved by a number of different 

methods, some of which are numerical and some of which are analytical.  Some even 

employ a combination of both.  Also, there are several different classes of beam-shaping 

systems, the most popular being those using diffractive elements7,8,9,10 and those using 

refractive elements.11,12  Reflective systems have also been produced.13  The GA method 

can be used to optimize most systems of the above classes, which will be demonstrated 

in this word by the solution of several laser profile-shaping problems.  The first three 

problems define the „proof-of-principle‟ stage.  Once it has been demonstrated that 

indeed the GA method can find solutions to these problem in a reasonably efficient 
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manner, the GA will be used to produce two entirely unique solutions to a difficult 

problem, which is presented in the last sections. 

Scope of Applications  

For the first problem, the GA determines the shape of one surface of a beam-

shaping element such that the wavefront of a beam entering the system is modified to 

have a uniform irradiance profile on a surface some distance away.14   To increase the 

complexity of the problem a bit, the beam is shaped such that it is uniform on a 

spherical surface.  Thus, the system is diverging and the non-paraxial aspects of the 

system must be accounted for in subsequent irradiance calculations.  A similar problem 

has recently been addressed in the literature using diffractive elements and a 

parametric optimization method.15   

For the second problem, the GA is given two aspherical surfaces to shape, each 

respective surface being part of a separate shaping element.  The GA must do this with 

the constraints that the outgoing beam is parallel to the optical ( Z ) axis and that it 

has a specified radius.  This problem is designed to mimic the system designed by Jiang, 

Shealy and Martin16.  This should make for an interesting comparison of the efficiency 

of the two methods, in addition to demonstrating whether multiple solutions to the 

problem exist. 

The final two problems inspired by a gradient-index shaping system designed by 

Wang and Shealy.17  For these problems, the GA not only must determine shaping 

attributes such as element thickness and surface shape, but also must choose gradient 

glass types from a catalog.  Since the glass type can only be chosen from a finite set of 

values, the parameter that describe the glass type is discrete.  Many conventional 

optimization techniques work in a continuous parameter space, since they are often 
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driven by first- and second-order derivatives.  The ability to choose from discrete 

parameters is a particularly powerful feature of the GA, relative to other optimization 

codes.  In the final application, the GA is given creative latitude in determining that 

actual makeup of solution to the given problem.   GA method used here is not a unique 

application in optics.  Indeed, it should be noted that several other examples of GA-

designed systems can be found in the optics literature.18,19  In the next sections, the 

fundamental principles governing GA optimization are introduced by describing there 

application to the problems described above. 

Computational Methods for Irradiance Calculations via Ray-trace Methods 

Fundamental to laser beam-shaping computations is a fast, accurate means of 

determining irradiance (energy per unit area per unit time) profiles at different 

locations in an optical system.  To do this, one must start with first principles: energy 

must be conserved in a non-dissipative optical system.  This principle is mathematically 

expressed in the form of the energy conservation law.  The energy conservation law has 

broad application, from designing reflective beam shapers via analytical differential 

equation methods to the development of finite-element mesh methods for the design of 

beam-shaping holograms.20,21,22  In order to employ the energy conservation law, the 

concepts of rays and wavefronts must be developed as well as a description of how rays 

and wavefronts traverse an optical system.  These concepts are fundamental to 

geometrical optics, and many discussions on this subject can be found in the 

literature.23,24,25,26  In fact, the derivation presented below follows closely a discussion 

developed by Shealy.27  Remembering that the ultimate goal is to describe the 

irradiance on defined surface, the optical field must be determined throughout the 

system.  As described by Shealy, the optical field is a local plane wave solution of 
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Maxwell's equations for an isotropic, non-conducting, charge-free medium.  It is a 

solution to the scalar wave equation28, 29 

 2 2 2

0 ( ) 0  n k e r , (1)   

where ( )e r  represents the components of the electric field at any point r , n  is the index 

of refraction at r , and 0k is the wave number in free space.  The wave number is 

described as follows: 

0 02 k c   , (2) 

where   is the frequency of the wave, c  is the speed of light, and 0  is the wavelength 

of incident light.  Assume that a solution to Eq. (1) can be written as 

 0 0( ) ( ) exp ( )e e ik Sr r r  (3) 

where 0 ( )e r  and ( )S r  are unknown functions of r .  Substituting Eq. (3) into Eq. (1) and 

performing the indicated operations, one finds that the following conditions must be 

satisfied by ( )S r  and 0 ( )e r  (neglecting term proportional to 
2

01 k ): 

 
2 2 S n  and (4) 

2 2

0 0 02 0    e S e e S . (5) 

Equation (4) , known as the eikonal equation, is a fundamental relation in geometrical 

optics.  Surfaces described by 

( , , ) .S x y z const  (6) 

are known as the geometrical wavefronts.  The surfaces represent constant phase 

solutions to Eq. (3).  The concept of optical rays is derived from geometrical wavefronts:  
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rays always are normal the wavefronts in isotropic media.  A unit vector normal to the 

wavefront and along a ray at the point r is given by 

( )
( )

( )





S

S

r
a r

r
. (7) 

Coupling this with the eikonal equation, one finds 

( )
( )

( )



S

n

r
a r

r
. (8) 

Equation (8) defines a ray vector at the point r . 

As illustrated in Ref. 26, Eq. (5) can be recognized as one form of the geometrical 

optics intensity law for the propagation of a bundle of rays.  To see this, one starts by 

rewriting  Eq. (5) using the vector identity ( )    f f fv v v , which results in 

   2 2

0 0 0   e S e na . (9) 

Recognizing that the energy density of a field is proportional to the square of the field 

amplitude 
2

oe  and that the intensity I  is equal to energy density of the field times the 

speed of propagation within medium, then Eq. (9) can be written as 

  0 I a . (10) 

Multiplying Eq. (9) by the constant  4c   for CGS units gives the correct dimensions 

for intensity.30  Equation (10) expresses conservation of radiant energy for non-

conducting medium.  Integrating Eq. (10) over a tube surrounding a bundle of rays31 as 

illustrated in Fig. 1 gives and applying Gauss' theorem on that result yields 

1 1 2 2I dA I dA . (12) 
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Equation (12) expresses conservation of energy along a ray bundle between any 

two surfaces intersecting the beam and is a basic equation used to the laser beam 

shaping systems presented herein.  To employ energy conservation for the systems 

here, the irradiance (irradiance is used interchangeably with intensity) profile of a 

bundle of rays striking the input pupil is defined by a radially symmetric function ( ) 

.  These rays propagate through the beam profile-shaping system (the „black box‟) and 

exit to strike the Output Surface.  The irradiance distribution on the Output Surface is 

represented by the function ( )u .  Assuming no energy is dissipated by the system, Eq. 

(12)  (re-written here as it is before applying Gauss‟ theorem) must be satisfied: 

   ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ,       
in in out out

I O

E da u dA   n v n v  (13) 

where E  is the total energy entering the system and I  and O  are the Input Plane and 

Output Surface, over which the respective integrations occur.   The irradiance function 

on the Input Plane, ( )   is the same as 1I  in Eq. (12) and irradiance function on the 

Ouput Surface, ( )u  is 2I .  Also, ˆ ( )in n  and ˆ ( )out
n  are the normal vectors on the 

input and output surfaces, respectively.  ( )in v  and ( )out
v  are unit vectors along the 

direction of an individual ray (striking the input surface at radial height  , and the 

output surface at radial height  ) at the input and output surfaces, respectively.  See 

Fig. 2 for further elaboration of terms in Eq. (13). da  and dA  are derived below.  
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Source 

1 1I dA  

2 2I dA  

 

Fig. 1. Illustration of Conservation of Energy with a Bundle of Rays (from Ref. 27).



 Copyrighted Material  9 

Copyright © 1999 Neal C. Evans 

All rights reserved 

 

 

Beam shaping 

system 

Input Plane 

Output Surface 

 i  

r  

d i  

vi

in
 

ni

in
 

R  

v i

out
 

n i

out
 

 i

out
 

z  

dai  

dA i  

i  
iout

 

 

Fig. 2. Beam expander with Input Plane and Output Surface.  The beam profile is shaped to be uniform on the Output Surface 

(from Ref. 14). 
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Balancing the radiant energy striking differential ring da  with the radiant energy 

exiting differential ring dA , as required by Eq. (13), one can see that 

 
 

ˆ ( ) ( )
( ) ( ) .

ˆ ( ) ( )

  
 

  

in in

out out

da
u

dA
 

n v

n v
 (14) 

To determine the ratio /da dA  in Eq. (14), N  rays are traced through the system, 

where N  is a reasonably large number, though not so large as to be computationally 

expensive.  For this application, 200N  is chosen, which gives adequate resolution for 

the input and output profiles.  Each ray enters parallel to the optical (Z-) axis at a 

specified height, i , where the set of i  are distributed equally across the radius of the 

Input Plane according to the following function: 

, 0 .
 

  
 

i

r
i i N

N
  (15) 

Each ray will exit the system and strike a point on the Output Surface, as shown in Fig. 

2.  At the point where the ray strikes the Output Surface, i , the axial distance from 

the optical axis, and i , the angle between the unit vector normal to the Output 

Surface at the intercept point and the optical (Z-) axis, are measured.  Thus, an array 

with 3N members (3 columns: i , i , i , and N  rows) is populated from ray trace 

data. 

One can see in Fig. 2 that ida  is given by 2 i id   , where  

1. i i id    (16) 

The definition of id  in this manner is arbitrary; definitions such as 1 i i id    or 

1 1  i i id    would be just as effective.  Furthermore, the subscript i  is introduced 
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to emphasize the numerical nature of the solution to the now discrete function in Eq. 

(14).  Calculation of idA  is somewhat more complicated, since the Output Surface is a 

not flat like the Input Plane.  In general, idA  is given by 2 i idS , where idS  is found 

by referring to Fig. 3: 

.
cos


 i

i out

i

d
dS


 (17) 

Also, it is clear from Fig. 2 and Fig. 3 that  

ˆ ( ) ( ) cos( ( )) in in ini  n v  and (18) 

ˆ ( ) ( ) cos( ( ))    out out outin v . (19) 

Combining these observations with Eqs. (14)-(17), one has 

 
 1

1

cos( ) cos( )
( ) .

cos( ) ( )





 
   

   

in out

i i i i i

i i out

i i i i

i
u

i

   
   (20) 

In the examples presented herein, the input irradiance is assumed to be Gaussian, 

measured in units of rays per unit area: 

 2
( ) exp , i i    (21) 

where   is a unitless quantity given by 
2 22 i N  .  Here, the beam waist of the 

incoming beam is expressed by N , and is defined as the radius of the circle where the 

irradiance drops to 
21 e  of the central irradiance.  The N  rays that are traced through 

the system are distributed uniformly over the Input Place according to Eq. (15).  Though 

a variety of input profiles may be used with this method, a Gaussian input profile is 

chosen because it describes typical laser profiles when the laser is in the fundamental 
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Fig. 3. Determination of .idA   From the figure, one can see that 1   i i id  and 

that cos( )  out

i i idS d  (from Ref. 14). 
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mode (TEM00).  Eq. (20) expresses the output beam irradiance in terms of the input 

beam irradiance times a ratio of areas expressing the beam expansion as a result of ray 

propagation through the optical system.  Eqs. (20) and (21), along with the ray trace 

array, provide an accurate means of calculating the beam profile over any reasonable 

surface.  The accuracy of this method has been verified by calculating the profiles for 

several benchmark systems.16,17  Calculations of output beam profiles using Eq. (20) are 

in close agreement with the profiles given in the benchmark papers.  Now, a merit 

function can be developed based on Eq. (20) which allows the GA to distinguish between 

systems with uniform intensity profiles (which are desired) and non-uniform profiles.  

This is done in the sections that follow. 
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THEORY OF OPTIMIZATION 

Generally, the idea behind optimization is that one has some function f  which 

may be evaluated easily, usually computationally.  This function is expressed in terms 

of several variables which may be discrete or continuous in nature.  One wishes to find 

the values of these variables which make f  assume either its maximum or minimum 

value. The difficulty of the problem is related to whether one is searching for local 

extrema, of which there may be many, or the global extrema, which represent the 

absolute best solutions.  The complexity of the problem is related to the number of 

variables which make up f , in addition to the ease with which f  can be calculated.32  

The greater the complexity of the problem, the longer it takes to arrive at a solution.  

Thus, search algorithms which arrive at solutions quickly are to be coveted, which is 

evident by the voluminous amount of research regarding the subject present in the 

literature.33,34  In this work, the GA search method is presented as one of these 

treasured methods, but it should be noted that other algorithms exist which produce 

similar, if not superior performance.  Two popular alternative methods, simulated 

annealing and the Tabu search35 are discussed below. 

Overview of Iterative Computational Optimization Methods 

Though there are myriad optimization techniques to choose from, methods such 

as GAs and Simulated Annealing are of particular interest because of their ability to 

solve combinatorial minimization problems.  The key feature of such problems is that 
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one or more of the parameters that make up the merit function (which is to be 

maximized) are discrete, in the sense that they only can assume particular values from 

a pre-defined set of allowable values.  Thus, instead of an N dimensional space made 

up of N  continuous parameters, one is presented with a parameter space whose 

complexity is factorially large—so large in fact that it cannot be completely explored.36   

Without a continuous merit function, concepts such as “downhill” and “uphill” lose their 

meaning and other optimization techniques, such as the Simplex Method,37 can no 

longer be applied.  For example, in the problem presented in Design and Analysis of a 

Gradient-Index Shaper and Design and Analysis of a Free-Form GA-Designed GRIN , 

the glass types of the lens elements in the system are chosen from a fixed set of 

gradient-index materials found in a manufacturer‟s catalog.  It is here that GAs and 

Simulating Annealing techniques excel, though they also can be applied to problems 

that are purely continuous as well.  In the literature, there are numerous examples of 

problems solved using these techniques,38,39 as well as research that compares the 

performance of one or more of these methods on the same class of problems.40,41,42,43  It 

seems that of the three methods discussed here, no one method is necessarily more 

efficient than the others, though it does appear that GAs and the Tabu search tend to 

arrive at solutions more quickly than Simulated Annealing methods, at least in the 

papers cited here. 

It should be noted that several commercial optical design and analysis packages 

implement these techniques in their optimization routines to varying degrees.  OSLO44, 

for example, uses an „adaptive simulating annealing‟ method.  ZEMAX45 and CODE V46 

also contain proprietary global optimization methods.  The problem with these 

implementations, among other things, is that the merit functions in these packages are 



 Copyrighted Material  16 

 

Copyright © 1999 Neal C. Evans 

All rights reserved 

 

oriented towards imaging systems (ZEMAX, however, allows for user-defined merit 

functions computed by macros or an external programming interface), limiting one‟s 

ability to manipulate the merit function for one‟s own purpose.  Also, since the makers 

of these packages keep their optimization codes proprietary, one‟s ability to tweak those 

routines is all but eliminated.  More ambitious goals like parallelization of the 

optimization code (see Parallelization of the Genetic Algorithm below) becomes 

extremely difficult, at best.   

Genetic Algorithms 

Since GAs are based on a biological paradigm, a lot of the GA nomenclature is 

borrowed directly from evolutionary biology.  The reader may find it useful to have some 

of this jargon expressed in terms more familiar to the optics community.  As discussed 

above, GAs produce a finite number of test solutions to a problem.  Individually, these 

solutions are referred to as „organisms‟ (or just „individuals‟), and collectively as a 

„generation.‟  A „generation‟ is essentially an iteration.  With each iteration, the merit 

function , M , is evaluated for each member of a generation.  There may be a few as five 

or as many as hundreds of individuals per generation, depending on the code used and 

how it is configured.  For the applications explored here, there are typically five or ten 

individuals in a generation.  A new generation of child systems is produced from the 

genetic material of the parent generation (the specifics of this process are described 

below). An individual‟s genetic code represents a particular system prescription.  For 

example, in the Beam Shaper/Projector example presented in Design and Analysis of a 

Beam Shaper/Projector, the six parameters that collectively define one surface of the 

beam-shaping element are concatenated into a string (i.e., genetic code).  Thus, with 
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each iteration, five or ten new system prescriptions are produced and their respective 

merit functions evaluated. 

The GA method developed here is based on a Micro-GA code.47,48,49  Micro-GAs 

have several features which distinguish them from other GA codes.  The most 

prominent of these features is the fact that Micro-GAs can operate efficiently with small 

generation sizes (on the order of 10 individuals per generation).  This is important for 

the applications presented here, since evaluation of the merit function for each 

individual is a very time-consuming process.  The Micro-GA is able to work with small 

generation sizes by checking for „stagnancy‟ in each generation it produces.  Stagnancy 

is determined by taking the average value of the merit function for all the individuals in 

a generation, ( )M t , and comparing it to average merit functions values for N  parent 

generations, ( 1), ( 2), ..., ( )  M t M t M t N .  If these values do not differ significantly 

(a parameter which can be set in the Micro-GA, and is usually „tweaked‟ at the 

beginning of a problem to produce the most efficient code), then the population is 

defined as stagnant.  Essentially, when stagnancy is detected, the code assumes that 

the GA is stuck in a local minima and attempts to add some randomness to the process.  

When such a situation arises, the GA picks the best of the individuals in a generation, 

kills the remaining and replaces them with new, randomly-selected individuals in the 

child generation. 

„Reproduction‟ is defined as producing a child generation of new individuals from 

the genetic material of a parent generation.  The individual with the highest value of 

M in a particular generation is most likely to have its genetic material passed on to the 

next generation.  The „genetic material‟ for a particular individual is defined by 

concatenating the binary value for each parameter to be optimized into a binary string 
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(consists of only ones and zeros).  See Fig. 4 for an example.  New generations are 

created by a „crossover operator‟, which swaps chunks of genetic material (strings) 

between two or more individuals in a generation.  With the Micro-GA code, crossovers 

are done in a manner that maintains individual „alleles‟.  An allele is the particular 

value that a parameter assumes, expressed in string format.50  When a crossover occurs, 

the strings that represent alleles are not broken into pieces, but are transferred from 

one individual to another intact.  Another operation the GA performs is „mutation.‟  

Here, the GA randomly selects one or several bits in an allele, and changes the state of 

these bits.  Since the string is binary, this amounts to operating on the bit with „Not‟ 

(not 0 = 1, not 1 = 0).  Mutation add a built-in randomness to the GA method, which 

helps the GA avoid local minima.  Because of the stagnancy-checking feature it employs, 

the Micro-GA allows one to avoid the constant tweaking of GA parameters (e.g., 

crossover and mutation rates) which is often necessary with conventional routines.  The 

flowchart for this GA, referred to as the sequential GA, is shown in Fig. 5. 

Parallelization of the Genetic Algorithm 

Given that the total execution time for the problems discussed in this work is 

nearly seven hours, it is important to increase the efficiency of the GA method.  This can 

be accomplished by having the code execute in parallel, something facilitated by the 

nature of the GA.  Parallel implementations of GA codes are common in the literature, 

and several different strategies for parallelization exist.51,52  The two most popular 

strategies are described below. 

For the first strategy, it is interesting to note that, generally, the most 

computationally intensive step of the optimization process involves the evaluation of the 

merit function.  In these applications, this involves calling optical simulation or optical 
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c  k  A4  A6  A8  A10  

11010010000000011001010000000001111001100111111111111101111011101001
000011... 

18.4774 
 

-0.2104 -.899960E-03 0.100000E-04 
 
 

-.439161E-07 0.644856E-08 

Real(8) to binary conversion 

 

Fig. 4. Example of the genetic material for a single individual.  Values (Real*8) for 

each parameter are converted into binary strings, which are in turn concatenated into 

one long string, the genetic material for that individual (from Ref. 14).  Individual 

alleles (the values that 4 10, , , ,c k A A  assume, expressed in binary form) are kept 

intact when crossovers occur. 
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Initialize GA by 
randomly picking 
new individuals 

Evaluate Merit 
Function for each 
individual in 
generation 

Perform genetic 
operations (reproduction, 
mutations, cross-overs); 
produce new generation 

Is the population 
stagnant?  (Micro-GA 
check) 

Keep best individual and 
replace the remainder with 
randomly-selected individuals 

End 

Y 

N 

Y 

N 

Step eligible for parallelization 

Termination 

criterion reached? 

 

Fig. 5. Flowchart of the sequential micro-GA.  For definitions of reproduction, 

mutations, cross-overs and stagnancy see Genetic Algorithms.  
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design packages, such as CODE V, which are external the Genetic Algorithm code itself.  

For example, in the problems presented herein, the evaluation of the merit function 

involves calling CODE V and tracing 200N  rays for each system.  The calculation 

time for a single generation with 10 individuals takes about 9 seconds (on a Sun Ultra 1 

170 with 64M of RAM).  Of this, about 8 seconds on average is spent in CODE V.  The 

evaluation of the merit function step is an obvious candidate for parallelization.  Thus, a 

potential parallel scheme is one where the GA executes sequentially on one machine, 

the master node, until it reaches the point where the merit function is to be evaluated.  

Here, the master initiates  processes on each of the slave nodes.  The slave nodes, in 

turn, evaluate the merit functions for individuals in the generation given to them in 

parallel and return the results to the master.  Once all the merit functions are 

evaluated, the GA code runs normally on the master and executes all GA-related 

operations, producing the next generation.  This parallel scheme, known as the 

Standard Parallel GA Paradigm, is shown in Fig. 6, along with an alternative parallel 

scheme, which is explained below. 

An alternative scheme, the subpopulation parallel paradigm, essentially runs 

independent instantiations of the GA code on each node.  With time, different nodes 

produce different best individuals with varying degress of fitness.  The best individuals 

are periodically sent to a central bookkeeping node, the “integrator”.  The integrator 

finds the “best of the best” and distributes this champion to the other slave nodes, where 

the genetic material of this champion is assimilated by the local subpopulation.  If there 

are enough nodes, each subpopulation can execute on a pod of machines using the 

Standard Parallel GA Paradigm outlined above.  Thus, one must test the efficiency not 
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Executes main 
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Slave Node: Evaluates 
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Slave Node: Evaluates 
Merit Function 

Slave Node: Evaluates 
Merit Function 
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Merit Function 

Slave Node: Evaluates Merit 
Function 

Integrator Node: Distribute best 
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b. Subpopulation Parallel Paradigm 

a. Standard GA Parallel Paradigm 

 

Fig. 6. Two parallel GA paradigms.  In the first setup, the standard GA paradigm 

(a), the GA is executed sequentially on the master until the step where the merit 

function is evaluated.  At this point, the merit function is evaluated in parallel on the 

slave nodes.  In the second setup, the subpopulation parallel paradigm (b), the GA 

executes normally on several slave machines, which at pre-defined time send their best 

individuals to the integrator.  The integrator then redistributes these individuals to the 

other slave nodes. 
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only of the two paradigms individually, but also a hybrid scheme that incorporates both 

paradigms. 

One could run the parallel GA (PGA) on a inhomogeneous cluster of 

workstations on the 10/100 Mbps local-area network.  Message passing among nodes 

could be accomplished using the MPI-253,54 libraries, making the PGA code easily-

scalable to high-performance massively-parallel systems.  For most research, however, 

scaling to parallel supercomputers is not feasible since evaluation of the merit function 

for common problems requires calling proprietary software packages such as CODE V, 

for which the source code is not (freely) available.55  If problems are chosen where all 

source code is available, including that for evaluating the merit function, the GA can be 

ported to a supercomputer environment with (relatively) little modification. 
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APPLICATIONS 

One key feature of the GA method is its broad applicability.  Using the theory 

and tools developed above, one can adapt the GA to solve a multiplicity of problems.  

The problems presented below are chosen not only to demonstrate this advantage, but 

to do so while building a logical, concise method that builds from simple to more 

complex applications.  Furthermore, these problems are chosen from current literature 

and provide a means to compare the solutions generated by the GA with solutions 

generated by other methods.  Hopefully, this will provide insight into where the GA 

methods are appropriate and where they are of little advantage.  The three problems 

chosen here are Design and Analysis of a Beam Shaper Projector, Design and Analysis 

of a Gradient-Index Shaper and Design and Analysis of a Two-lens Shaper. 

Design and Analysis of a Beam Shaper/Projector 

The general goal here is to modify the shape of a lens element (the „shaping 

element‟) to uniformly illuminate a spherical surface some distance away.  See Fig. 7 for 

a ray trace of the system.  For this particular application, the use of a Genetic Algorithm 

is perhaps a tad overzealous, considering that other more established design methods 

could be employed to produce solutions both easily and efficiently.  The goal, however, is 

a long-term one: the GA technique will be used to attack systems that are difficult to 

solve with more conventional methods.  For example, certain holographic projection 

systems have fitness landscapes with 20 or more dimensions and extremely complex 
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Fig. 7. Beam-shaping system with ray trace showing the density of rays increases at 

the periphery of the Output Surface, as one would expect to compensate for the 

Gaussian nature of the input beam.  Both the thin lens element and the shaping 

element are shown.  The shaping element is determined by the GA (from Ref. 14). 
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merit functions, making their solution with conventional methods very tedious.56  For 

the short-term, it must be established that the GA technique produces good solutions in 

a reasonably efficient manner.  This is accomplished by the application of the GA 

technique to simple, well-understood systems.  The insights gained by this application 

will provide a picture of the fundamental mechanisms that govern this and the nuances 

involved in its proper implementation. 

The application of a GA generally must satisfy two prerequisites.  First, one 

must identify those parameters that fundamentally characterize the system.  The 

parameters must be numerically quantifiable and the modification of these parameters 

should have direct consequence on the system itself.  Second, one must identify those 

features of a system which best describe the fitness (or „merit‟) of the system.  This could 

be one particular attribute, such as focal length, or, on the other extreme, could involve 

the blending of many different attributes, each with different weights and measures of 

influence. 

In the application of the GA to the beam profile-shaper, one surface of a 

refractive lens is modified such that the irradiance profile over a spherical image 

surface is uniform (that is, ( ) constant u  in Eq. (14)).  The rotationally-symmetric 

lens surface is characterized by the conventional surface equation used in optics: 

2 5
2

2
2 2

2

( ) ,
1 1 (1 ) 

 
  

 j

j

j

c h
z h A h

k c h
 (22) 

where z  is the sag of the surface, c  is the curvature of the surface, k  is the conic 

constant and 4 10A A  are aspherical deformation coefficients.  z  is an even function of 

h , the surface radial distance from the optical axis.  The choice of this function allows 

the GA great flexibility in determining the shape of the lens surface, depending on the 
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number of deformation coefficients included in the optimization process.  One might 

speculate that the lens surface must be highly aspherical, based on results from similar 

beam-shaping systems, such as that discussed in Ref. 16.  Furthermore, it is desirable 

to provide the GA with a large (multi-dimensional) parameter space to explore, since 

this is where GAs are especially powerful.  Thus, the GA is given six parameters to 

optimize: 4 6 8, , , , ,c k A A A  and 10A . 

Finally, the GA must be given a means of distinguishing between good systems 

and bad systems.  In this application, a uniform irradiance profile over the Output 

Surface is desired.  The Output Surface is a sphere with a radius of 84.12 cmR .57  

Furthermore, it is required that the exit pupil have a radius of 50 cm.  To accomplish 

this, the following merit function is defined:14 

 
21

exp 50 ,   
 NM s


 (23) 

where 
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( )iu  is defined in Eq. (20).  In Eq. (23), N  is the radial height (as measured from the 

optical axis) of the marginal ray on the Output Surface, which defines the exit pupil in 

this case.  The exponential function is chosen since, for this problem, one wants the 

merit function to peak sharply at 50 cmNP .  The exponential accomplishes this 
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nicely, but functions other than the exponential may have been chosen for the same 

purpose.  s  determines the sensitivity of the merit function to the exit pupil radius 

constraint: the smaller the value that s  assumes, the more prominent the exponent 

becomes.  In this example, s  is set to 0.01 .  This value is adjusted on occasion while the 

GA is executing to insure that the pupil radius constraint is satisfied.  In Eqs. (24) and 

(25), u  is the “mean” of the values of the output intensity function, ( )iu  over N  

points on the Output Surface.  As the beam profile on the Output Surface becomes more 

uniform,   approaches zero, and M increases substantially.  Also, as the exit pupil, 

which is measured by N , approaches 50 cm , the value of M peaks as a result of the 

exponential in Eq. (23).  This is illustrated in Fig. 8.  Systems with the desired 

characteristics—a uniform beam profile on the Output Surface and an exit pupil of 

50 cm —will have higher values of M, which is precisely what is required.  The GA will 

find those systems with the highest value of M. 

The beam-shaping element consists of two surfaces.  The first surface is flat and 

the second surface, of course, has its shape determined by the GA.  The GA starts by 

randomly choosing, within pre-determined constraints, values for the six surface-shape 

parameters to be optimized.  In each generation, ten individuals are produced (see 

section 0 for explanation of GA nomenclature).  The parameters for each individual are 

passed to a ray-tracing routine (CODE V is used for ray tracing in this application) 

where N  rays are traced and the value of the merit function, M , is calculated for each 

individual as above.  See APPENDIX A: CODE SAMPLES FROM DESIGN AND 

ANALYSIS OF A GRADIENT-INDEX SHAPER for an example of a CODE V macro 
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Fig. 8. Merit function versus   and N .  200N  in this system (from Ref. 14).
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used to evaluate the merit function and call the GA library.  The constraints on each of 

the surface-shape parameters are given in Table 1.  

Table 1. Constraints on surface parameters.  Each parameter must be between or 

equal to the end points of the respective constraint. 

The GA code was executed simultaneously on four Sun Sparcs, all running 

Solaris 2.6.  The constraints were modified in real-time so that each instantiation of the 

GA code could search different regimes of the parameter space.  Once it became 

apparent that a particular regime contained better solutions, the constraints were 

narrowed on all machines to search that regime more thoroughly.  The constraints 

given in Table 1 represent the final values of these constraints.  Also, when one machine 

found an individual that was substantially superior to the best individuals on the other 

three machines, the code on the three other machines was re-initialized using a restart 

file from the machine with the superior individual.  This amounts to a primitive form of 

parallel processing, an issue which will be better addressed in future applications (see 

Parallelization of the Genetic Algorithm).  Total processing time was not rigorously 

recorded but was on the order of 12 hours.  The fastest machine of the four, a Sun Ultra 

1 170 with 64M of RAM, found the best individual.  The search was stopped when no 

Surface Parameter Constraint 

c  10 to 20  

k  1.0 to 0  

4A  3 31.0 10 to1.0 10    

6A  5 51.0 10 to1.0 10    

8A  6 61.0 10 to1.0 10    

10A  7 71.0 10 to1.0 10    
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significantly better individuals were found over a period of five hours, so the best 

individual actually was discovered after about 7 hours of proN cessing time. 

The final profile-shaping system is shown in Fig. 7, with the GA-determined 

shaping element shown in Fig. 9.  In Fig. 7, one notices that the GA-determined shaping 

element is actually the second element in the system; the fiu rst
5 23.78 10 rays/mm  

element (the „thin lens element‟) is an artifact of the initial design requirements and is 

not part of the optimization process.  The purpose of the thin lens element is to focus the 

incoming collimated beam such that the Numerical Aperture of the shaping element is 

0.7.  The two surfaces of the thin lens element are spherical and the shape factor is set 

such that spherical aberration is minimized.58  The shape of the input beam profile is 

shown in Fig. 10.  It is assumed that the laser beam is circular and is operating in the 

fundamental mode, TEM00.  In Fig. 11, one can see that irradiance on the Output 

Surface is nearly uniform, with a average value, u , of 
32.13 10  rays/mm2.  To check 

for self-consistency, the irradiance functions, ( )   and ( )u , are integrated over the 

Input Plane and Output Surface, respectively.  The results of these integrations are in 

close agreement, as expected.  The uniformity of the output profile can be characterized 

by the standard deviation from the mean value of the  points that determine the output 

profile.  The standard deviation for this data set is , which is 1.8% of .  The general 

parameters for the system are given in Table 2, along with specific parameters for the 

shaping element and thin lens element in Table 3. 
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Fig. 9. Shaping element showing aspherical surface, which is determined by the GA.  

The axial thickness of this element is 6 mm (from Ref. 14). 
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 ( )  

, mm  
 

Fig. 10. Input beam irradiance profile.  The 
21 e  diameter of the input beam is 7.882 

mm.  Integrating ( )   over the Input Plane yields 21.1 units, a quantity which must 

be conserved according to Eq. (13) (from Ref. 14). 
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u( )  

, mm  
 

Fig. 11. Beam profile on Output Surface.  The radius (N ) of the Output Surface is 

52.5 mm.  The mean value of the profile, u , is 2.13x10-3 
2rays mm , with a standard 

deviation of 3.78x10-5.  Integrating this mean value ( ( ) constant  u u ) over the 

Output Surface yields a value of 20.7 units (from Ref. 14).  The beam profile is radially-

symmetric.  
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Table 2. Beam Shaper/Projector System Parameters. 

Parameter Value 

Wavelength 441.57 nm 

Radius of the input beam (Entrance Pupil Diameter) 3.9441 mm 

Radius of the output aperture 52.5 mm 

Glass type for two lens elements Ohara slah53 

Index of ambient medium (air) 1.0 

Gaussian constant  in Eq. (21) 0.129 
2mm
 

Object distance Infinity 

Image distance from shaping surface 242.9 mm 

 

Table 3. Beam Shaper/Projector Lens Element Parameters 

The GA method produced the desired system--that is, a system with a uniform 

irradiance profile on the spherical Output Surface and with an exit pupil very close to 

50 mm--in a reasonably efficient manner and while requiring virtually no user input.  

The GA started with a randomly defined system and found a good solution in about 7 

hours.  The self-consistency check, which involves integrating the input irradiance 

 Thin Lens Element Shaping Element 

Parameter Left 

Surface 

Right 

Surface 

Left Surface Right Surface 

Aperture Radius   8.0 mm 8.0 mm 

Thickness 1.0 mm 49.1 mm 6.0 mm 242.9 mm 

Vertex radius (1 c

) 

36.606 mm 359.72 mm infinity 14.235 mm 

Surface type spherical spherical spherical aspherical 

Conic constant ( k )    0.0 

4A     -0.66411x10-3 mm 

6A     0.12400x10-5 mm 

8A     -0.31156x10-6 mm 

10A     -0.61495x10-8 mm 
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function, ( )  , over the Input Plane and integrating the output irradiance function, 

( )u , over the Output Surface, indicates energy is conserved as required by Eq. (13).  

The small difference in the two values (1.9% error) can be attributed the small 

deviations from the mean (u ) in the output irradiance profile data set, as shown in the 

previous paragraph.  Nevertheless, this error would certainly fall within an acceptable 

range of fabrication for an aspherical surface such as those in this problem.59  

This application illustrates the ability of GAs to solve difficult problems, 

suggesting the GA may be useful in solving more complex and vexing problems in 

optics.  The efficiency of the GA method can be enhanced by introducing parallelism into 

the GA code.  The most computationally expensive step in the GA routine is the 

calculation of the merit function, which requires N rays to be traced through the system 

for each individual in a generation.  This is done in serial and no other part of the code 

can execute until the merit function has been calculated.  If merit functions for various 

individuals are calculated in parallel on several slave machines simultaneously, 

allowing the GA to run unfettered on a master machine, the efficiency of the overall 

search process will be enhanced significantly. 

Design and Analysis of a Two-lens Beam Shaper 

This system represents the most complex presented thusfar, where complexity is 

related to the dimensionality of the merit-function space.  This problem is inspired by 

the system designed, built and tested by Jiang, Shealy and Martin in Ref. 16.  The 

system has two lens elements, which are designed to shape an incoming Gaussian beam 

to an outgoing beam with a uniform irradiance profile.  The system expands an 8mm 

incoming beam to 12mm.  Both incoming and outgoing beams are parallel to the optical 

axis.  The right surface of the first lens and the left surface of the second lens 
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accomplish the irradiance redistribution and beam expansion.  In Ref. 16, these shaping 

surfaces are highly asperical. 

As above, the merit function must contain a term that quantifies the uniformity 

of the irradiance profile on an Output Surface.  Furthermore, the merit function must 

insure that the outgoing rays are parallel to the optical axis and that the radius of the 

output beam is some predefined value.  The precise nature of this merit function is 

similar to those described in the previous problems.  The GA is given 12 parameters to 

optimize in this problem: 4 6 8, , , , ,c k A A A  and 10A  for the aspherical lens surface of each 

of the two lens in the system.  The merit function for this system has the same form as 

the one for the Beam Shaper/Projector system outlined in Design and Analysis of a 

Beam Shaper/Projector [Eqs. (23)-(25)], save that ‟50‟ in Eq. (23) is „12‟ in this example 

(since the radial height of the marginal ray should be 12 mm in this example and not 50 

mm).  This 12-dimension parameter space is the most complex presented thus far.  

Consequently, the optimization time for this problem is significantly longer, taking 

some 50 hours on the platforms described above, using the serial processing paradigm.  

The GA, nevertheless, found a solution, which is presented in Fig. 12, Fig. 13, Table 4, 

and Table 5. 
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Lens 1 

Lens 2 

 

Fig. 12. Two-lens beam shaper system with ray trace.  The right surface of Lens 1 and 

the left surface of Len 2 are shaped by the GA. 
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Input Profile 

Output Profile 

 ( )  

,mm  
 

Fig. 13. Input and Output irradiance profiles for the Two-lens Beam Shaper.  The 
21 e  diameter of the input beam is 16.0 mm.  Integrating ( )   over the Input Plane 

yields 86.9 units.  The radius (N ) of the Output Plane is 10.7 mm.  The mean value of 

the profile, u , is 0.242
2rays mm , with a standard deviation of 1.86x10-3 rays/mm2, or 

0.8% of u .  Integrating this mean value ( ( ) constant  u u ) over the Output Surface 

yields a value of 87.0 units.  Energy is conserved, as required in Eq. (13). 
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Table 4. Two-lens Shaper System Parameters. 

Parameter Value 

Wavelength 589.00 nm 

Radius of the input beam (Entrance Pupil Diameter) 8.00 mm 

Radius of the output aperture 10.7 mm 

Glass type for two lens elements CaF2 

Index of ambient medium (air) 1.0 

Gaussian constant  in Eq. (21) 0.031 
2mm
 

Object distance Infinity 

Table 5. Two-lens Shaper Lens Element Parameters 

 First Lens Element Second Element 

Parameter Left 

Surface 

Right Surface Left Surface Right 

Surface 

Thickness 10 mm 150 mm 10 mm 25 mm 

Vertex radius (

1 c ) 

infinity 100.59 mm -100.01 mm infinity 

Surface type spherical aspherical aspherical spherical 

Conic constant (

k ) 

 -0.922971 -0.375469  

4A   0.843226x10-5 mm 0.617298x10-4 mm  

6A   -.664541x10-6 mm -.960417x10-7 mm  

8A   0.504624x10-8 mm -.164098x10-8 mm  

10A   0.274667x10-14 mm 0.687429x10-11 mm  

12A   -.999878x10-13 mm 0.466018x10-14 mm  

Design and Analysis of a Gradient-Index Shaper 

The Beam Shaper/Projector problem presented in the previous section provides 

an example of a purely continuous merit function.  Continuous merit functions can be 

solved by a number of different methods, and solving it with a GA is nothing 

particularly glamorous.  As an example of a more complex problem—one difficult to 
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solve using more conventional methods—the GA technique is used to design a Gradient-

Index Shaper, which has a merit function that contain both continuous and discrete 

parameters.  This problem was solved using a differential-equation design method in a 

paper by Wang and Shealy.17  Though Wang was able to produce several perfectly good 

solutions, the gradients of the lenses reported in Ref. 17 were determined solely by 

solving the differential equations, and no constraints were imposed that required the 

indices of refraction of the lenses to correspond to those that can be found in common 

glass catalogs.  It follows that a challenging problem for the GA would be to create a 

laser shaping system with two gradient-index elements as Wang did, but to do so with 

the added constraint that the elements can only be chosen from existing glass catalogs.  

Obviously, this makes the potential for fabricating the system the more easily realized.  

Furthermore, this is an interesting problem from the perspective of the GA since it is 

now required to optimize discrete parameters in addition to continuous parameters, 

adding several nuances to the coding. 

The general layout of the gradient-index shaping system is inspired by Wang‟s 

system.  Essentially, there are two shaping elements, each of which are made from a 

gradient-index glass.  The right surface of each shaping element is spherical.  The 

precise shape of the spherical surface and the thickness for each shaping element are 

optimized by the GA.  Furthermore, there is a „connector‟ between the two shaping 

elements that is set a priori to be Schott BK7 glass type.  The „connector‟ in Wang‟s 

system matches the base index, 0n , of the two gradient elements (see Fig. 14).  This is 

necessary to insure that the marginal ray passes undeviated through the system.17   No 

such requirement is made for the GA problem, so the glass type of the connector can be 

set with caprice.  The GA is allowed to choose randomly from the Lightpath gradient-
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Fig. 14. Layout of the gradient-index expander designed by Wang and Shealy (from 

Ref. 17).  This system provides the inspiration for the Gradient-Index Shaper problem. 
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index glass catalog available in CODE V.  See CODE V documentation for more details 

on this glass catalog.  Thus, the GA optimizes the following continuous parameters: 

thickness of element 1, curvature of right surface of surface 1, thickness of connector, 

thickness of element 2 and curvature of right surface of surface 2.  Also, the GA 

optimizes the following discrete parameters, Lightpath gradient glass type for surfaces 

1 and 2 (four possible types for each surface) and gradient index direction for surface 1 

and 2 (may be positive or negative for each respective surface).  While the problems 

presented thus far have a continuous parameter space, this problem does not.  Because 

of this, derivative-based methods (e.g. simplex and Damped Least Squares60) are not 

applicable. 

The merit function for this system is designed with three key features.  First, the 

merit function includes a term to characterizes the flatness of the output profile, in the 

manner as shown in Design and Analysis of a Beam Shaper/Projector.  Second, the 

merit function includes a term the insures that each ray is perpendicular to the Output 

Plane, i.e., a collimated output beam.  The form of this term is expressed by the 

following function: 

2exp (1 )    , (26) 

where 

1

 
N

s

i

i

 . (27) 
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s

i  in the above equation is the cosine of angle that ray i  makes with the optical axis.  

The exponent s  adjusts the sensitivity of the merit function non-parallel ( 1 ) rays.  

For this application, s  is set at six.  If each ray traces through the system is parallel to 

the optical axis, then 1   and Eq. (26) is unity.  If not, then Eq. (26) is less than one 

and reduces the merit function, penalizing the system. 

Third, the merit function rewards those systems where the radius (N ) of the 

Output Plane is close to 8.0 mm.  This is expressed in the following function: 

2exp 0.01(8 )   N
, (28) 

where N  is the radial height of the marginal ray at the Output Surface.  If N  is 8.0 

mm as desired, then Eq. (28) is unity.  If not, then the system is penalized as above.  See 

APPENDIX A: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A GRADIENT-

INDEX SHAPER, line 101 to see these terms as they appear in the code, expressed as a 

complete function.  Descriptions of the terms in line 101 are given at the end of 

Appendix A.  Building the merit function in this manner is intended to produce a 

system that resembles the systems in Ref. 17, which makes similarities and differences 

more apparent. 

To solve this problem, the serial version of the GA is employed and CODE V 

calculates the merit function.  After a total execution time of about 7 hours, the highest 

value of the merit function (the best individual) failed to significantly improve 

indicating no better solutions were forthcoming.   The final system is shown in Fig. 15 

and the shapes of the input and output irradiance profiles, along with consistency 

checks, are shown in Fig. 16.  Examining this best individual, one finds that the 

integrating the irradiance functions, ( )   and ( )u  over the appropriate surfaces 
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Lens 2: 
LightPath G1SF, 

negative gradient 

Lens 1: 
LightPath G1SF, 

positive gradient 

Connector 

Scale: 1.00 

 

 

 

Fig. 15. Gradient-index shaper system with ray trace.  The materials for Lens 1 and 

Lens 2 were chosen from a catalog of materials by the GA.  
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Input Profile 

Output Profile 

, mm  

 ( )  

 

Fig. 16. Input and Output irradiance profiles for the Gradient-Index Shaper.  The 
21 e  radius of the input beam is 4.0 mm.  Integrating ( )   over the Input Plane yields 

21.7 units.  The radius (N ) of the Output Plane is 7.56 mm.  The mean value of the 

profile, u , is 0.121
2rays mm , with a standard deviation of 4.45x10-3.  Integrating this 

mean value ( ( ) constant  u u ) over the Output Surface yields a value of 21.7 units.  

Energy is conserved, as required in Eq. (13). 
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yields the same value.  Energy is conserved as expected.  The system satisfies all given 

constraints and performs with the necessary features; thus, the GA has indeed solved 

the problem.  The parameters for the final system are shown in Table 6 and Table 7.  It 

is interesting to note that the marginal rays converge inside the connector, resulting in 

a very long connector length.  Such a long connector would be undesirable in any system 

intended for manufacture.  By referring to Wang‟s system, one notes that the length of 

the connector is significantly smaller than the one produced by the GA.  This suggests 

that adding an additional constraint which limits the length of the connector to some 

small value could force the GA to produce a system with collimated marginal rays.  The 

index of refraction of the connector would also need to be a variable to satisfy the 

physical constraint that the marginal ray, defined as the ray that enters at the 
21 e  

point ( 4.0 mmN  in this case), passes undeviated through the system. 

Table 6. Gradient-Index Shaper System Parameters. 

Parameter Value 

Wavelength 589.00 nm 

Radius of the input beam (Entrance Pupil Diameter) 4.00 mm 

Radius of the output aperture 7.56 mm 

Glass type for two lens elements Lightpath G1SF 

Gradient for first lens element positive 

Gradient for second lens element negative 

Glass type for connector Schott BK1 

Index of ambient medium (air) 1.0 

Gaussian constant  in Eq. (21) 0.035 
2mm
 

Object distance Infinity 
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Table 7. Gradient-Index Shaper Lens Element Parameters 

Design and Analysis of a Free-Form GA-Designed GRIN Shaper 

While the previous examples establish the GA‟s ability to arrive at solutions for 

several well-understood problems, they do not fully harness the creative ability of the 

GA method.  If the GA were given more flexibility, from choosing the actual number and 

types of GRIN elements, rather than just their shapes, could the GA actually produce a 

solution in a reasonable amount of time?  In searching for a problem to address this 

question, one notes that an encumbrance of the GRIN system (based on one developed 

by Wang and Shealy17) presented earlier in this work is that it requires a „connector‟ 

piece.  In the Wang and Shealy system (see Fig. 14), this connector allows the marginal 

ray to trace parallel to optical axis.  The solution found by the GA presented in this 

work has all rays focusing within the connector (see Fig. 15), which is an undesirable 

feature from a fabrication perspective (the connector may be damaged if a high-power 

laser is used).  Since this possibility was never considered beforehand, no term in the 

merit function was added to penalize solutions where marginal rays focus within the 

connector.  Though not by design, this illustrates the creative nature of the GA, in the 

sense that the GA may find solutions to a given problem that the human designer never 

imagined. 

 First Lens Element Second Element 

Parameter Left 

Surface 

Right 

Surface 

Left 

Surface 

Right Surface 

Thickness 7.75 mm 199.9 mm 7.29 mm 25.0 mm 

Vertex radius (1 c ) infinity -99.58 mm infinity -58.15 mm 

Surface type spherical spherical spherical spherical 
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Thus, a new problem may be defined: is there a system that shapes an input 

beam to a flat profile in manner similar to that of the original Wang and Shealy GRIN 

system, but without requiring a connector piece between the lens elements whatsoever?  

That is, is there a shaping system that uses GRIN elements separated only by ambient 

air?  Furthermore, if the GA is no longer limited by specifying so many aspects of the 

optical system a priori, such as the actual number of elements present in the system, 

can the GA harness this greater flexibility in determining the makeup of the optical 

system to solve the problem?  To do this, the GA not only must optimize surface shapes 

of the GRIN elements and their spacing, but also must determine the actual number of 

elements in the solution, up to a certain limit (four, in this case).  In essence, to solve 

this problem, the GA must do the same things that a human optical designer would.  

The number of GRIN elements must be determined, the type of GRIN material for each 

element must be picked, and so on.  This new type of problem further distinguishes the 

GA method from deterministic methods (i.e., those that rely on derivatives and a 

smooth, continuous merit function) since the merit function required for this problem is 

a complicated mix of discrete and continuous parameters. 

The merit function is constructed in a manner similar to the previous problems.  

It contains three key terms: one term that measures the uniformity of the output 

profile, one term that insures that all rays exit the system parallel to the optical axis 

and finally, one term that penalizes systems that do not have the specified radius on the 

Output Surface (4 mm, in this case).  One unique aspect of this application is the way 

that the GA is allowed is select the actual number of elements for each test system.  

This variable, eleN , may be one of the following integers: one, two, three or four.  An 

idiosyncrasy of the particular GA code47 used in these examples is that parameters to be 
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optimized are defined by default as 8-bit real numbers.  The parameter in the code that 

corresponds to eleN  (an integer) is ( ,1)P i  (an 8-bit real number), where i  refers to the 

one of the ten individuals in a generation.  For this problem, there are actually 26 

parameters to be optimized, and the population size of each generation is 10.  Thus, P  

is a array with 10 rows and 26 columns.  In order to translate ( ,1)P i  into an integer 

within the desired range, the limits are set as follows: 

0.50 ( ,1) 4.49 P i ; (29) 

and, the following function is used for translation: 

 ( ) int ( ,1)eleN i P i , (30) 

where int( )a  is a function that rounds a  to the closest integer.  Using Eqs. (29) and (30)

, an integer between and including one and four is chosen, each with equal probability. 

It is this method that is used to define discrete parameters for the GA in all 

these problems that require them.  In this problem, there are eight other discrete 

parameters: the GRIN glass types and the GRIN direction for each of the (up to) four 

elements.  These glass types are selected from a catalog of GRIN elements for a 

particular manufacturer in the same manner as in the previous example.  See lines 34 

and 40 in APPENDIX A: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A 

GRADIENT-INDEX SHAPER for an example of this in the code.  See Table 8 for a 

description of all parameters optimized in this problem.  It should be noted that if the 

GA chooses less than four elements for a particular individual, the remaining surfaces 

are made into dummy surface in the code.  For example, if ( ,1) 3P i , then the following 

occurs: first, the left and right surface of element four is set to have an infinite radius of 

curvature, i.e. the surfaces are made flat.  Then, the thickness of element four is set to 
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zero and the glass type is set to air.  The net result is that element four has no effect on 

the optical system, while the surfaces for element four remained defined for future use, 

should they become necessary.  This method simplifies coding of the problem and makes 

evaluation of the merit function more efficient.  See APPENDIX B: CODE SAMPLES 

FROM DESIGN AND ANALYSIS OF A FREE-FORM GA-DESIGNED GRIN SHAPER 

for example of this in code. 

The code was executed on a Sun Ultra 1 170 with 64M of RAM as before.  Using 

this setup, it took an average of 7.80 seconds for the GA to completely evaluate the 

merit function for each of the 10 test systems (individuals) in a generation.  The code 

was allowed to run until it reached generation number 12,367, resulting in an effective 

total run-time of 26.8 hours.  The merit function, which is measured in arbitrary units, 

peaked at a value of 101.21M .  The fact that this value represents the best solution 

to the problem can be seen in Fig. 17, where it is clear that bestM  asymptotically 

approaches a value of about 102 . 

The system with a merit function value of 101.21M  is represented in Fig. 18.  

The system has 3 elements, all with spherical surfaces.  Most importantly, this solution 

reshapes the Gaussian Input Profile into a irradiance profile with uniform intensity on 

the Output Surface.  One finds that integrating the Irradiance Profile over the Output 

Surface yields 21.9 units, while integrating the specified Irradiance Profile over the 

Input Surface yields 21.7 units.  As with the Beam Shaper/Projector system, this error 

can be attributed to the small deviations from u  in the output irradiance profile data 

set.  Here, u  is the mean of ( )u , which is defined in Eq. (20).  The Input and Output 

profiles are shown in Fig. 19.  The parameters for the systems are given in Table 9 and 

Table 10. 
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Table 8. Optimized Parameters for the Free-Form GA-Designed GRIN Shaper 

problem. 

Para-

meter 

Parameter Description Parameter 

Type 

Parameter 

Limits61 

1 Number of Elements Discrete 1-4 (integer) 

2 Radius of curvature of left surface of Element 1 Continuous -100 to 100  

3 Radius of curvature of right surface of Element 1 Continuous -100 to 100 

4 Thickness of Element 1 Continuous 1 to 10  

5 Distance between Element 1 and Element 2 Continuous 1 to 10  

6 GRIN glass type for Element 1 Discrete 1-6 (integer) 

7 Positive or Negative GRIN for Element 1 Discrete 0, negative 

or 1, positive 

8 Radius of curvature of left surface of Element 2 Continuous -100 to 100  

9 Radius of curvature of right surface of Element 2 Continuous -100 to 100  

10 Thickness of Element 2 Continuous 1 to 10  

11 Distance between Element 2 and Element 3 Continuous 1 to 10  

12 GRIN glass type for Element 2 Discrete 1-6 (integer) 

13 Positive or Negative GRIN for Element 2 Discrete 0, negative 

or 1, positive 

14 Radius of curvature of left surface of Element 3 Continuous -100 to 100  

15 Radius of curvature of right surface of Element 3 Continuous -100 to 100  

16 Thickness of Element 3 Continuous 1 to 10  

17 Distance between Element 3 and Element 4 Continuous 1 to 10  

18 GRIN glass type for Element 3 Discrete 1-6 (integer) 

19 Positive or Negative GRIN for Element 3 Discrete 0, negative 

or 1, positive 

20 Radius of curvature of left surface of Element 4 Continuous -100 to 100  

21 Radius of curvature of right surface of Element 4 Continuous -100 to 100  

22 Thickness of Element 4 Continuous 1 to 10  

23 Distance between Element 4 and Surface 10 (a 

dummy surface) 

Continuous 1 to 10  

24 GRIN glass type for Element 4 Discrete 1-6 (integer) 

25 Positive or Negative GRIN for Element 4 Discrete 0, negative 

or 1, positive 

26 Distance from Surface 10 (a dummy surface) to 

the Output Plane 

Continuous 1 to 100  
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bestM  

Generation 
 

Fig. 17. A plot showing the best individual in a generation, bestM , as a function of 

generation.  bestM  is measured in arbitrary units.  When bestM  „plateaus‟ for a 

significant number of generations, it can be assumed that the best solution has been 

found. 
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 Element 1 

Element 2 
Element 3 

 

Scale: 1.00 

 

Fig. 18. Raytrace for the Free-Form GA-Designed GRIN Shaper system.  The GA 

produced a system with 3 elements and no connectors. 

 



 Copyrighted Material  55 

 

Copyright © 1999 Neal C. Evans 

All rights reserved 

 

 

( )   

,mm  

Input Profile 

Output Profile 

 

Fig. 19. Input and Output irradiance profiles for the Free-Form GA-Designed GRIN 

Shaper.  The 
21 e  radius of the input beam is 4.0 mm.  Integrating ( )   over the 

Input Plane yields 21.7 units.  The radius (N ) of the Output Plane is 12.4 mm.  The 

mean value of the profile, u , is 
-2 24.55 10  rays mm , with a standard deviation of 

31.70 10 , or 3.7% of u .  Integrating this mean value ( ( ) constant  u u ) over the 

Output Surface yields a value of 21.9 units.  Energy is conserved as required in Eq. (13). 
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Table 9. Free-Form GA-Designed GRIN Shaper Parameters. 

Parameter Value 

Wavelength 589.00 nm 

Radius of the input beam (Entrance Pupil Diameter) 4.00 mm 

Radius of the output aperture 12.4  mm 

Index of ambient medium (air) 1.0 

Gaussian constant  in Eq. (21) 0.035 
2mm
 

Number of Elements 3 

Distance from Surface 10 to Output Place (parameter 26 in Table 8) 100 mm 

Object distance Infinity 

Table 10. Free-Form GA-Designed GRIN Shaper Lens Parameters. 

To review, the GA method produced a shaper system that only has spherical 

surfaces, requires no connectors and uses GRIN lenses from the catalog of an 

established GRIN element manufacturer.  The GA solved a problem that would be 

difficult to solve using analytical methods or conventional optimization techniques,  

since the merit function contains discrete parameters (for example, picking the GRIN 

glass type from a pre-defined set of GRIN elements).  Furthermore, the GA was 

presented with a unique problem that has not been solved before and was allowed a 

certain degree of creativity in producing a solution.  The result is a three-lens system 

 First Element Second Element Third Element 

Parameter Left 

Surface 

Right 

Surface 

Left 

Surface 

Right 

Surface 

Left 

Surface 

Right 

Surface 

Thickness, 

mm 

9.99 10.0 6.77 9.48 4.25 9.71 

Vertex radius 

(1 c ), mm 

-61.6 80.4 -12.5 100 87.5 -30.3 

Surface type spherical spherical spherical spherical spherical spherical 

Glass Type 

(UDG C1)62 

3  2  1  

GRIN 

Direction 

negative  positive  negative  
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that is wholly the creation of the GA and has a form that could not have been 

anticipated before the fact. 
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SUMMARY AND CONCLUSIONS 

This work starts with the following assumption: there are some problems in 

geometrical optics that cannot be solved using either analytical methods, such as the 

differential equation method11,13, or conventional computational optimization 

techniques, such as the Simplex algorithm.37  There are numerous reasons  that  

account for this, ranging from merit functions that contain non-continuous parameters 

to problems that simply have no solution.  To this end, the following hypothesis is 

proposed: special machine learning codes--in particular, genetic algorithms--can be 

adapted to solve many of these problems.  The first step in testing this hypothesis is to 

establish that GAs can indeed produce solutions to problems in geometrical optics.  This 

is done by addressing a few well-understood problems from the literature, which have 

been solved by other methods.  In addition to establishing a proving ground, these 

exercises shed light on the myriad subtle qualities that govern the GA method.  

Hopefully, this information can be used to make the GA code run more efficiently and to 

determine the limits of its application. 

The first two problems presented here, Design and Analysis of a Beam 

Shaper/Projector and Design and Analysis of a Two-lens Beam Shaper, both could be 

solved by more conventional methods.  In fact, the Two-lens Beam Shaper problem has 

been solved by Jiang and Shealy via an analytical differential equation method.16   The 

GA method indeed produced solutions to these problems, and did so within a reasonable 

amount of time.  The solution to the Two-lens shaper problem produced by the GA is 



 Copyrighted Material  59 

 

Copyright © 1999 Neal C. Evans 

All rights reserved 

 

very similar to the one found by Jiang and Shealy.  Yet, both of these solutions, in 

addition to the solution to the Beam Shaper/Projector problem, require elements with 

highly aspherical surfaces.  Aspherical surfaces are used in these problems since often 

exotic surfaces are required to produce the desired solutions.  This greater flexibility 

makes finding a solution easier, both for the GA method and analytical methods.  

However, choosing aspherical surfaces comes at a price; they are both expensive to 

manufacture and difficult to build to precise specifications. 

With this in mind, Wang and Shealy endeavored to produce a beam shaping 

system similar to Jiang‟s Two-beam shaper but with the additional constraint that only 

the solution contains only spherical elements.  To compensate for the decreased 

flexibility as a result of requiring spherical surface shapes, gradient-index glasses were 

chosen for the shaping elements.  Using a differential equation design method, Wang 

and Shealy produced the desired shaping system.17  While the system performs its 

primary function of shaping a Gaussian input beam into a uniform profile on the 

Output Surface, it has two undesirable features.  First, a connector was added to allow 

the marginal ray to pass through the system unfettered by any of the shaping elements.  

This requirement is necessary to insure the that radius of the input beam is equal to 

that of the output beam.  Also, the parameters defining the index of refraction function 

for each of the GRIN elements in Wang‟s system were allowed to vary continuously, 

resulting in GRIN elements that could not be matched with elements found in 

established GRIN manufacturer catalogs.  That is, Wang‟s GRIN elements must be 

custom fabricated, adding significantly to the cost required to build that system. 

To address this issue, the GA was given the task of producing a system similar 

to Wang‟s except that the GRIN elements were to be chosen from a predefined set.  This 

set is simply a catalog of elements from a popular GRIN manufacturer (Lightpath was 
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used in this case, though any catalog would have been sufficient).  With this constraint, 

the problem contains parameters that can only assume certain values, and hence do not 

vary smoothly.  This aspect makes this problem difficult to solve with methods that rely 

on continuous merit functions, which eliminates the differential equation method used 

by Wang.  This is the first problem where the GA was used to produce a truly unique 

solution to a difficult problem.  The system found by the GA contains only spherical 

surfaces, has GRIN elements chosen by the GA from a  catalog and shapes the Gaussian 

input beam into one with a uniform irradiance profile on the output surface, as desired.  

However, it also has one unanticipated feature.  The marginal rays actually focus 

within the connector (see Fig. 15).  New terms might be added to the merit function to 

insure that rays do not focus within the connector, and the entire optimization process 

restarted to find a new solution.  Rather than follow this course, however, one finds that 

the accidental discovery of this feature shows the way to a new, more ambitious 

problem: the total elimination of the connector. 

In the Free-form GA-designed shaping system, the last problem presented in 

this work, the goal was to produce a system that has the following features.  First, it 

must contain elements with spherical surfaces only.  Second, it must contain elements 

that are chosen from a GRIN catalog.  Third, it must require no connectors and the rays 

should not focus within any elements (since such focusing of a high-powered laser could 

destroy the element).  Finally, of course, it must shape the beam into a uniform profile 

over the Output Surface.  In presenting the problem to the GA, no assumptions were 

made as to the number of elements required to solve the problem.  The GA was allowed 

to function as a human optical designer would--trying two elements in this system, four 

in another, and evaluating the merit function in each case to see what improvements, if 

any, resulted.  This problem demonstrates more than any other presented here how the 
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GA is an example of machine learning.  Essentially, information about past successes is 

preserved in the best individual of each iteration, and this information persists from 

generation from generation.  Progress is made, often in small steps, but sometimes in 

great leaps (see Fig. 17).  The final result is a system not conceived by the human 

designer, but a system that, nevertheless, functions as required. 

 Future work on this method lies in two areas.  First, solution time must be 

decreased, which now is on the scale of several hours for the problems considered.  This 

can be accomplished by a number of methods.  Because of the nature of the GA process, 

parallel versions of the code should be relatively easy to implement.  This is discussed in 

detail in Parallelization of the Genetic Algorithm above.  Another possibility is to 

explore implementation of new heuristic models in the GA driver, such as the Tabu 

search.35  The GA driver could easily be scaled to a massively-parallel supercomputers, 

but a raytracing package other than CODE V would have to be used to evaluate the 

merit function, since there is currently no version of CODE V that runs on 

supercomputers.  A good possibility is KDP55.  The source code for KDP is available from 

its developer for a reasonable price.   

The second area of work involves applying the GA method to areas other than 

geometrical optics.  These might include solving problems where the geometric 

approximation fails, such as systems that involve diffractive or holographic elements.  

To this end, packages other than CODE V would have to be used to evaluate the merit 

function, since the geometrical irradiance calculation method developed here neglects 

interference effects.  One such package is GLAD, a laser diffraction modeling package, 

which is developed by Applied Optics Research, 3023 Donee Diego Drive, Escondido, 

California.  If such a problem were pursued, a new interface would have to be written to 

interface the laser modeling package with the GA driver.  
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  Any of these are worthwhile projects, since this work demonstrates that the GA 

method can solve many problems in optical design and theoretical optics that are 

intractable to other methods.   Furthermore, the GA method has great flexibility and its 

range of applicability is broad.  After the merit function is properly defined and an 

efficient method of evaluating the merit function is found, adapting the basic GA kernel 

to solve the problem at hand follows with ease.  In order to solve the problems in this 

work, it was necessary to develop an efficient, accurate means of calculating irradiance 

profiles over a variety of surfaces.  Building this foundation consumed a large portion of 

development time for the GA method, but its importance cannot be overstated.  The 

theoretical underpinnings of this irradiance calculation algorithm is presented in 

Computational Methods for Irradiance Calculations via Ray-trace Methods.  In any 

case, this optimization method provides a means to produce solutions unfettered by 

convention or human influence. 
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APPENDIX A: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A GRADIENT-

INDEX SHAPER 
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This appendix illustrates how CODE V can be used to evaluate the merit 

function for the Gradient-Index system.  The code below is written in CODE V macro 

language.  Not shown in this appendix is the GA driver, which is written in Fortran 77.  

See Ref. 47 for more information on the GA driver.  To access the GA driver in CODE V, 

the GA code was compiled into a library format as specified in the CODE V 

documentation.  See „User-defined functions‟ in the CODE V manuals for more 

information.  At line 2, the parameters are defined that provide a communications 

nexus between CODE V and the GA driver.  The GA is invoked at line 20, where the 

parameters defined in line 2 are passed to the GA.  The GA interprets the values stored 

in the „^fun(200)‟ array, and uses those in its calculations.  In turn, the GA populates 

the „^par(200,9)‟ array, which defines a new generation to be evaluated in CODE V.  

The for..end for  loop starting at line 27 and ending at line 111 contains the code that 

traces the 200 rays for each of the 10 individuals per generation and, most importantly, 

evaluates the merit function for each.  The raytrace is done in lines 67-79.  The 

irradiance profile is calculated in lines 83-92.  The precise form of the merit function can 

be found in lines 95-105.  The first term, „1/^merit,‟ is a value proportional to the 

flatness (uniformity) of the output profile.  „^nsum‟ is a value related to the angle each 

ray traced through the system make with the optical ( Z ) axis.  As each of these 

angles approaches 0, „^nsum‟ approaches 1.  If „^nsum‟ is one, then it makes no 

contribution to the merit function.  The last term, „expf(-0.01*((8 - ^r2(200))**2))‟ is less 

than one if the radial height of the marginal ray („^r2(200)‟) is some value other than 

eight, penalizing the system.  Also note how the Gradient glass type is chosen in lines 

47-61.  This is a unique feature of this particular Gradient-Index application.  The 
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command „prv‟ at line 48 instructs CODE V to begin a private (user-defined) glass type.  

„pwl 589‟ at line 49 indicates that the private glass is valid for wavelength  =589nm.  

„UDG C1‟ and „UDG C2‟ are the two discrete parameters that select the GRIN element 

from the several available in the CODE V gradient-index catalog.  The values are 

populated from the variables ^UDGC11 and ^UDGC12, which are set by the GA, in 

lines 52 and 53.  This same process is repeated to define a private glass type for the 

second shaping element in lines 54-58.  Finally, the individual glass type for the 

shaping elements are set to the two newly defined private glasses in lines 60 and 61. 

GA macro: ga.seq.1 (CODE V macro language) 

lcl num ^merit ^meritv(10) 1 
lcl num ^par(200,9) ^fun(200) ^iv 2 
lcl num ^r1(0..200) ^r2(0..200) ^n(0..200) ^srn(0..200) 3 
lcl num ^sum ^avg ^eprinc ^raymiss ^nsum 4 
lcl num ^i2p ^i2s(0..200) 5 
lcl num ^UDGC11 ^UDGC12 ^UDGC21 ^UDGC22 6 
 7 
out n 8 
ver all n 9 
exc n 10 
 11 
^eprinc == (epd)/400. 12 
 13 
for ^iv -1 1000000 14 
 15 
if (^iv=0) 16 
 ^iv == 2 17 
end if 18 
 19 
usr ^par ^fun ^iv 20 
!out y 21 
!wri (tim) 22 
!wri "__________" 23 
!out n 24 
 25 
 26 
for ^c 1 10 27 
 28 
thi s2 ^par(^c,1) 29 
thi s4 ^par(^c,2) 30 
thi s3 ^par(^c,3) 31 
rdy s3 ^par(^c,4) 32 
rdy s5 ^par(^c,5) 33 
^UDGC11 == roundf(^par(^c,6)) 34 
if (^par(^c,7) > 0) 35 
 ^UDGC12 == 1 36 
els 37 
 ^UDGC12 == -1 38 
end if 39 
^UDGC21 == roundf(^par(^c,8)) 40 
if (^par(^c,9) > 0) 41 
 ^UDGC22 == 1 42 
els 43 
 ^UDGC22 == -1 44 
end if 45 
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 46 
del prv all 47 
prv 48 
pwl 589 49 
'n1' LPT GRADIUM 1.7 50 
UDG 51 
UDG C1 (^UDGC11) 52 
UDG C2 (^UDGC12) 53 
pwl 589 54 
'n2' LPT GRADIUM 1.7 55 
UDG 56 
UDG C1 (^UDGC21) 57 
UDG C2 (^UDGC22) 58 
end 59 
gla s2 'n1' 60 
gla s4 'n2' 61 
 62 
^merit == 0 63 
^sum == 0 64 
^nsum == 1 65 
 66 
for ^i 0 200 67 
 ^r1(^i) == ^i*^eprinc 68 
 ^j == raysin(0,0,0.,^r1(^i),0.,0.) 69 
 if (^j <> 0) 70 
  ^raymiss == 1 71 
 els 72 
  ^r2(^i) == (y s6) 73 
  ^r2(^i) == absf(^r2(^i)) 74 
  ^n(^i) == (n s6) 75 
  ^nsum == ^nsum * ^n(^i)**6 76 
  ^srn(^i) == (srn s6) 77 
 end if 78 
end for 79 
 80 
if (^raymiss = 0) 81 
 ^a == -logf((PUI))/((PUX)*(EPD)/2.)**2 82 
 for ^i 1 200 83 
  ^j == ^i-1 84 
  ^k == ^i 85 
  ^i2p == (^r1(^i)*(^r1(^k)-^r1(^j))*expf(-^a*^r1(^i)**2)*^n(^i))& 86 
   /(^r2(^i)*(^r2(^k)-^r2(^j))) 87 
  ^i2s(^i) == 88 
(^i2p*^srn(^i))/((^n(^i)*^srn(^i))+(sinf(acosf(^n(^i)))*sinf(acosf(^srn(^i))))) 89 
 ! ^i2s(^i) == ^i2p*absf(^srn(^i)) 90 
  ^sum == ^sum + ^i2s(^i) 91 
 end for 92 
 ^avg == ^sum/199 93 
  94 
 for ^i 1 200 95 
  ^merit == ^merit + (^i2s(^i) - ^avg)**2 96 
 end for 97 
 98 
 ^merit == sqrtf(^merit/199) 99 
 100 
 ^meritv(^c) == 1/^merit * expf(-1*((1 - ^nsum)**2)) * expf(-0.01*((8 - 101 
^r2(200))**2)) 102 
 103 
els 104 
 ^raymiss == 0 105 
 ^meritv(^c) == 0 106 
end if  107 
 108 
^fun(^c) == ^meritv(^c) 109 
 110 
 111 
end for 112 
 113 
end for 114 
 115 
ver y 116 
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APPENDIX B: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A FREE-

FORM GA-DESIGNED GRIN SHAPER 
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This appendix illustrates how CODE V is used to evaluate the merit function for 

the Free-Form GA-Designed GRIN.  The code below is written in the CODE V macro 

language as in Appendix A.  The functionality is similar to that presented in Appendix 

A except for several interesting differences.  First, the number of elements present in 

the system is set at line 34 in the variable „^iEle‟.  Then, ^iEle is checked and so that 

the appropriate number of surfaces can be nullified where ^iEle<4.  For example, if 

^iEle=1, the appropriate parameters defining element 1 are set in lines 37-59, while the 

surfaces defining the remaining three elements are nullified in lines 60-72. 

This sequence also uses a new CODE V raytracing function, „raytra‟, which 

appears at line 277.  The raytra function offers significantly better performance than 

the „raysin‟ function used at line 66 in Appendix A.  Furthermore, special check at lines 

289-294 insures that rays do not cross within the system, which is an undesired feature 

for this problem.  As an unexpected consequence, this check offers marginally increased 

performance since systems with crossing rays are immediately given a merit function 

value of zero.  In the code presented in Appendix A, the merit function for systems with 

crossing rays would be calculated normally, which led to the focused beam in the 

connector for the solution presented in Design and Analysis of a Gradient-Index Shaper.  

The merit function is presented at lines 320-321.  This merit function is essentially 

identical to the one in Appendix A, except for the additional term „expf(-0.1*((4 - 

^r2(1))**2))‟.  This term was added with the hopes that rays would be pushed from the 

center of the output irradiance profile more quickly, in order to arrive at a solution more 

efficiently. 

 

GA macro: ga.seq.7 (CODE V macro language) 

lcl num ^merit ^meritv(10) 1 
lcl num ^par(200,26) ^fun(200) ^iv 2 
lcl num ^r1(0..200) ^r2(0..200) ^n(0..200) ^srn(0..200) 3 
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lcl num ^sum ^avg ^eprinc ^raymiss ^nsum 4 
lcl num ^i2p ^i2s(0..200) 5 
lcl num ^UDGC11 ^UDGC12 ^UDGC21 ^UDGC22 6 
lcl num ^UDGC211 ^UDGC212 ^UDGC221 ^UDGC222 7 
lcl num ^UDGC311 ^UDGC312 ^UDGC321 ^UDGC322 8 
lcl num ^UDGC411 ^UDGC412 ^UDGC421 ^UDGC422 9 
lcl num ^iEle 10 
lcl num ^input(4) ^output(8) 11 
 12 
out n 13 
ver all n 14 
exc n 15 
 16 
^eprinc == (epd)/400. 17 
 18 
for ^iv -1 1000000 19 
 20 
if (^iv=0) 21 
 ^iv == 2 22 
end if 23 
 24 
usr ^par ^fun ^iv 25 
!out y 26 
!wri (tim) 27 
!wri "__________" 28 
!out n 29 
 30 
 31 
for ^c 1 10 32 
 33 
^iEle == roundf(^par(^c,1)) 34 
 35 
if (^iEle = 1) 36 
 rdy s2 ^par(^c,2) 37 
 rdy s3 ^par(^c,3) 38 
 thi s2 ^par(^c,4) 39 
 thi s3 ^par(^c,5) 40 
 ^UDGC11 == roundf(^par(^c,6)) 41 
 if (^par(^c,7) > 0) 42 
  ^UDGC12 == 1 43 
 els 44 
  ^UDGC12 == -1 45 
 end if 46 
 gla s2 47 
 gla s4 48 
 gla s6 49 
 gla s8 50 
 del prv all 51 
 prv 52 
 pwl 589 53 
 'n1' LPT GRADIUM 1.7 54 
 UDG 55 
 UDG C1 (^UDGC11) 56 
 UDG C2 (^UDGC12) 57 
 end 58 
 gla s2 'n1' 59 
 rdy s4 9e99 60 
 rdy s5 9e99 61 
 thi s4 0 62 
 thi s5 0 63 
 rdy s6 9e99 64 
 rdy s7 9e99 65 
 thi s6 0 66 
 thi s7 0 67 
 rdy s8 9e99 68 
 rdy s9 9e99 69 
 thi s8 0 70 
 thi s9 0 71 
 thi s10 ^par(^c,26) 72 
els if (^iEle = 2) 73 
 rdy s2 ^par(^c,2) 74 
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 rdy s3 ^par(^c,3) 75 
 thi s2 ^par(^c,4) 76 
 thi s3 ^par(^c,5) 77 
 ^UDGC11 == roundf(^par(^c,6)) 78 
 if (^par(^c,7) > 0) 79 
  ^UDGC12 == 1 80 
 els 81 
  ^UDGC12 == -1 82 
 end if 83 
 ^UDGC211 == roundf(^par(^c,12)) 84 
 if (^par(^c,13) > 0) 85 
  ^UDGC212 == 1 86 
 els 87 
  ^UDGC212 == -1 88 
 end if 89 
 gla s2 90 
 gla s4 91 
 gla s6 92 
 gla s8 93 
 del prv all 94 
 prv 95 
 pwl 589 96 
 'n1' LPT GRADIUM 1.7 97 
 UDG 98 
 UDG C1 (^UDGC11) 99 
 UDG C2 (^UDGC12) 100 
 pwl 589 101 
 'n2' LPT GRADIUM 1.7 102 
 UDG 103 
 UDG C1 (^UDGC211) 104 
 UDG C2 (^UDGC212) 105 
 end 106 
 gla s2 'n1' 107 
 gla s4 'n2' 108 
 rdy s4 ^par(^c,8) 109 
 rdy s5 ^par(^c,9) 110 
 thi s4 ^par(^c,10) 111 
 thi s5 ^par(^c,11) 112 
 rdy s6 9e99 113 
 rdy s7 9e99 114 
 thi s6 0 115 
 thi s7 0 116 
 gla s6 117 
 rdy s8 9e99 118 
 rdy s9 9e99 119 
 thi s8 0 120 
 thi s9 0 121 
 gla s8 122 
 thi s10 ^par(^c,26) 123 
els if (^iEle = 3) 124 
 rdy s2 ^par(^c,2) 125 
 rdy s3 ^par(^c,3) 126 
 thi s2 ^par(^c,4) 127 
 thi s3 ^par(^c,5) 128 
 ^UDGC11 == roundf(^par(^c,6)) 129 
 if (^par(^c,7) > 0) 130 
  ^UDGC12 == 1 131 
 els 132 
  ^UDGC12 == -1 133 
 end if 134 
 ^UDGC211 == roundf(^par(^c,12)) 135 
 if (^par(^c,13) > 0) 136 
  ^UDGC212 == 1 137 
 els 138 
  ^UDGC212 == -1 139 
 end if 140 
 ^UDGC311 == roundf(^par(^c,18)) 141 
 if (^par(^c,19) > 0) 142 
  ^UDGC312 == 1 143 
 els 144 
  ^UDGC312 == -1 145 
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 end if 146 
 147 
 gla s2 148 
 gla s4 149 
 gla s6 150 
 gla s8 151 
 del prv all 152 
 prv 153 
 pwl 589 154 
 'n1' LPT GRADIUM 1.7 155 
 UDG 156 
 UDG C1 (^UDGC11) 157 
 UDG C2 (^UDGC12) 158 
 'n2' LPT GRADIUM 1.7 159 
 UDG 160 
 UDG C1 (^UDGC211) 161 
 UDG C2 (^UDGC212) 162 
 pwl 589 163 
 'n3' LPT GRADIUM 1.7 164 
 UDG 165 
 UDG C1 (^UDGC311) 166 
 UDG C2 (^UDGC312) 167 
 end 168 
 gla s2 'n1' 169 
 rdy s4 ^par(^c,8) 170 
 rdy s5 ^par(^c,9) 171 
 thi s4 ^par(^c,10) 172 
 thi s5 ^par(^c,11) 173 
 gla s4 'n2' 174 
 rdy s6 ^par(^c,14) 175 
 rdy s7 ^par(^c,15) 176 
 thi s6 ^par(^c,16) 177 
 thi s7 ^par(^c,17) 178 
 gla s6 'n3' 179 
 rdy s8 9e99 180 
 rdy s9 9e99 181 
 thi s8 0 182 
 thi s9 0 183 
 gla s8 184 
 thi s10 ^par(^c,26) 185 
els 186 
 rdy s2 ^par(^c,2) 187 
 rdy s3 ^par(^c,3) 188 
 thi s2 ^par(^c,4) 189 
 thi s3 ^par(^c,5) 190 
 ^UDGC11 == roundf(^par(^c,6)) 191 
 if (^par(^c,7) > 0) 192 
  ^UDGC12 == 1 193 
 els 194 
  ^UDGC12 == -1 195 
 end if 196 
 ^UDGC211 == roundf(^par(^c,12)) 197 
 if (^par(^c,13) > 0) 198 
  ^UDGC212 == 1 199 
 els 200 
  ^UDGC212 == -1 201 
 end if 202 
 ^UDGC311 == roundf(^par(^c,18)) 203 
 if (^par(^c,19) > 0) 204 
  ^UDGC312 == 1 205 
 els 206 
  ^UDGC312 == -1 207 
 end if 208 
 ^UDGC141 == roundf(^par(^c,24)) 209 
 if (^par(^c,25) > 0) 210 
  ^UDGC412 == 1 211 
 els 212 
  ^UDGC412 == -1 213 
 end if 214 
 215 
 216 
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 gla s2 217 
 gla s4 218 
 gla s6 219 
 gla s8 220 
 del prv all 221 
 prv 222 
 pwl 589 223 
 'n1' LPT GRADIUM 1.7 224 
 UDG 225 
 UDG C1 (^UDGC11) 226 
 UDG C2 (^UDGC12) 227 
 pwl 589 228 
 'n2' LPT GRADIUM 1.7 229 
 UDG 230 
 UDG C1 (^UDGC211) 231 
 UDG C2 (^UDGC212) 232 
 pwl 589 233 
 pwl 589 234 
 'n3' LPT GRADIUM 1.7 235 
 UDG 236 
 UDG C1 (^UDGC311) 237 
 UDG C2 (^UDGC312) 238 
 pwl 589 239 
 'n4' LPT GRADIUM 1.7 240 
 UDG 241 
 UDG C1 (^UDGC411) 242 
 UDG C2 (^UDGC412) 243 
 end 244 
 gla s2 'n1' 245 
 rdy s4 ^par(^c,8) 246 
 rdy s5 ^par(^c,9) 247 
 thi s4 ^par(^c,10) 248 
 thi s5 ^par(^c,11) 249 
 prv 250 
 pwl 589 251 
 end 252 
 gla s4 'n2' 253 
 rdy s6 ^par(^c,14) 254 
 rdy s7 ^par(^c,15) 255 
 thi s6 ^par(^c,16) 256 
 thi s7 ^par(^c,17) 257 
 gla s6 'n3' 258 
 rdy s8 ^par(^c,20) 259 
 rdy s9 ^par(^c,21) 260 
 thi s8 ^par(^c,22) 261 
 thi s9 ^par(^c,23) 262 
 gla s8 'n4' 263 
 thi s10 ^par(^c,26) 264 
end if 265 
 266 
 267 
^merit == 0 268 
^sum == 0 269 
^nsum == 1 270 
 271 
!for ^i 0 200 272 
^i == 200 273 
unt 274 
 ^r1(^i) == ^i*^eprinc 275 
 ^input(1)==0; ^input(2)==^r1(^i); ^input(3)==0; ^input(4)==0 276 
 ^j == raytra(0,0,0,^input,^output) 277 
 if (^j <> 0) 278 
  ^raymiss == 1 279 
  ^i == 0 280 
 els 281 
  !^r2(^i) == (y s11) 282 
  ^r2(^i) == ^output(2) 283 
  ^r2(^i) == absf(^r2(^i)) 284 
  !^n(^i) == (n s11) 285 
  ^n(^i) == ^output(6) 286 
  ^nsum == ^nsum * ^n(^i)**6 287 
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  ^srn(^i) == (srn s11) 288 
  if ^i < 200 289 
   if ^r2(^i) > ^r2(^i+1) 290 
    ^raymiss == 1 291 
    ^i == 0  292 
   end if 293 
  end if 294 
 end if 295 
!end for 296 
 ^i == ^i-1 297 
end unt (^i < 0) 298 
 299 
if (^raymiss = 0) 300 
 ^a == -logf((PUI))/((PUX)*(EPD)/2.)**2 301 
 for ^i 1 200 302 
  ^j == ^i-1 303 
  ^k == ^i 304 
  ^i2p == (^r1(^i)*(^r1(^k)-^r1(^j))*expf(-^a*^r1(^i)**2)*^n(^i))& 305 
   /(^r2(^i)*(^r2(^k)-^r2(^j))) 306 
  ^i2s(^i) == 307 
(^i2p*^srn(^i))/((^n(^i)*^srn(^i))+(sinf(acosf(^n(^i)))*sinf(acosf(^srn(^i))))) 308 
 ! ^i2s(^i) == ^i2p*absf(^srn(^i)) 309 
  ^sum == ^sum + ^i2s(^i) 310 
 end for 311 
 ^avg == ^sum/199 312 
  313 
 for ^i 1 200 314 
  ^merit == ^merit + (^i2s(^i) - ^avg)**2 315 
 end for 316 
 317 
 ^merit == sqrtf(^merit/199) 318 
 319 
 ^meritv(^c) == 1/^merit * expf(-1*((1 - ^nsum)**2)) * expf(-0.01*((8 - 320 
^r2(200))**2))* expf(-0.1*((4 - ^r2(1))**2)) 321 
 322 
els 323 
 ^raymiss == 0 324 
 ^meritv(^c) == 0 325 
end if  326 
 327 
^fun(^c) == ^meritv(^c) 328 
 329 
 330 
end for 331 
 332 
end for 333 
 334 
ver y 335 
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APPENDIX C: CODE SAMPLES FROM THE FORTRAN GENETIC ALGORITHM 

DRIVER 
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This appendix illustrates how many of the GA techniques actually are coded.  As 

mentioned in Appendix A, the GA driver is written in Fortran 77 and compiled into an 

object as specified in the CODE V manual.  The subroutine in this object called 

„USERSUB‟ (as required by CODE V) is than instatiated when the appropriate 

command is issued in a CODE V macro sequence (see line 20 in Appendix A and line 25 

in Appendix B).  The variables used to pass information to and from the GA driver and 

CODE V must be defined appropriately in both the GA driver and in the CODE V 

macro sequence.  In the applications presented in this work, three such variables were 

used: „parentv‟, an array containing the values for all parameters to be optimized for 

each system in a generation (or step); „funcvalv‟, an array containing the values of the 

merit functions for each system in a generation; and „iv‟, an integer indicating the 

generation number.  These variables can be seen in lines 1-2 below. 

Fundamental to the GA process is the ability to encode real numbers into 

strings, which are the genetic material for a system.  The code used to encode and 

decode the parameters into and from strings is shown in lines 5-71.  Also, two important 

operators, „crossover‟ and „mutate‟ are coded in lines 72-194.  Finally, the Micro-GA 

code, which checks for „stagnancy‟ among adjacent populations, is shown in lines 195-

246.  The Micro-GA function allows for small populations sizes (usually 10 members), 

which is important for these applications since evaluation of the merit function is so 

time-consuming.  It should be noted that the code presented below is only a small part 

of the entire Fortran GA driver, since the entire code set is quite large.  Contact the 

author for a complete copy of the GA driver. 
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GA driver: ga164.f (Fortran 77) 

subroutine USERSUB ( parentv, funcvalv, iv) 

      REAL*8 parentv(indmax,nparmax),funcvalv(indmax),iv 

      INTEGER*4 res 

 

c####################################################################### 

      subroutine decode(i,array,iarray) 

c 

c  This routine decodes a binary string to a real number. 

c 

      implicit double precision (a-h,o-z) 

      save 

c 

      include 'params.f' 

      common / ga2   / nparam,nchrome 

      common / ga5   / g0,g1,ig2 

      dimension array(indmax,nparmax),iarray(indmax,nchrmax) 

      dimension g0(nparmax),g1(nparmax),ig2(nparmax) 

c 

      l=1 

      do 10 k=1,nparam 

         iparam=0 

         m=l 

         do 20 j=m,m+ig2(k)-1 

            l=l+1 

            iparam=iparam+iarray(i,j)*(2**(m+ig2(k)-1-j)) 

 20      continue 

         array(i,k)=g0(k)+g1(k)*dble(iparam) 

 10   continue 

c 

      return 

      end 

c 

c####################################################################### 

      subroutine code(j,k,array,iarray) 

c 

c  This routine codes a parameter into a binary string. 

c 

      implicit double precision (a-h,o-z) 

      save 

c 

      include 'params.f' 

      common / ga2   / nparam,nchrome 

      common / ga5   / g0,g1,ig2 

      dimension array(indmax,nparmax),iarray(indmax,nchrmax) 

      dimension g0(nparmax),g1(nparmax),ig2(nparmax) 

c 

c  First, establish the beginning location of the parameter string of 

c  interest. 

      istart=1 

      do 10 i=1,k-1 

         istart=istart+ig2(i) 

 10   continue 

c 

c  Find the equivalent coded parameter value, and back out the binary 

c  string by factors of two. 

      m=ig2(k)-1 

      if (g1(k).eq.0.0) return 

      iparam=nint((array(j,k)-g0(k))/g1(k)) 

      do 20 i=istart,istart+ig2(k)-1 

         iarray(j,i)=0 
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         if ((iparam+1).gt.(2**m)) then 

            iarray(j,i)=1 

            iparam=iparam-2**m 

         endif 

         m=m-1 

 20   continue 

c     write(3,*)array(j,k),iparam,(iarray(j,i),i=istart,istart+ig2(k)-1) 

c 

      return 

      end 

 

c####################################################################### 

      subroutine crosovr(ncross,j,mate1,mate2) 

c 

c  Subroutine for crossover between the randomly selected pair. 

      implicit double precision (a-h,o-z) 

      save 

c 

      include 'params.f' 

      dimension parent(indmax,nparmax),child(indmax,nparmax) 

      dimension iparent(indmax,nchrmax),ichild(indmax,nchrmax) 

c 

      common / ga2   / nparam,nchrome 

      common / ga3   / parent,iparent 

      common / ga7   / child,ichild 

      common /inputga/ pcross,pmutate,pcreep,maxgen,idum,irestrt, 

     +                 itourny,ielite,icreep,iunifrm,iniche, 

     +                 iskip,iend,nchild,microga,kountmx 

c 

      if (iunifrm.eq.0) then 

c  Single-point crossover at a random chromosome point. 

         call ran3(1,rand) 

         if(rand.gt.pcross) goto 69 

         ncross=ncross+1 

         call ran3(1,rand) 

         icross=2+dint(dble(nchrome-1)*rand) 

         do 50 n=icross,nchrome 

            ichild(j,n)=iparent(mate2,n) 

            if(nchild.eq.2) ichild(j+1,n)=iparent(mate1,n) 

 50      continue 

      else 

c  Perform uniform crossover between the randomly selected pair. 

         do 60 n=1,nchrome 

            call ran3(1,rand) 

            if(rand.le.pcross) then 

               ncross=ncross+1 

               ichild(j,n)=iparent(mate2,n) 

               if(nchild.eq.2) ichild(j+1,n)=iparent(mate1,n) 

            endif 

 60      continue 

      endif 

 69   continue 

c 

      return 

      end 

c 

c####################################################################### 

      subroutine mutate 

c 

      implicit double precision (a-h,o-z) 

      save 

c 

      include 'params.f' 
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      dimension nposibl(nparmax) 

      dimension child(indmax,nparmax),ichild(indmax,nchrmax) 

      dimension g0(nparmax),g1(nparmax),ig2(nparmax) 

      dimension parmax(nparmax),parmin(nparmax),pardel(nparmax) 

c 

      common / ga1   / npopsiz,nowrite 

      common / ga2   / nparam,nchrome 

      common / ga5   / g0,g1,ig2 

      common / ga6   / parmax,parmin,pardel,nposibl 

      common / ga7   / child,ichild 

      common /inputga/ pcross,pmutate,pcreep,maxgen,idum,irestrt, 

     +                 itourny,ielite,icreep,iunifrm,iniche, 

     +                 iskip,iend,nchild,microga,kountmx 

c 

c  This subroutine performs mutations on the children generation. 

c  Perform random jump mutation if a random number is less than pmutate. 

c  Perform random creep mutation if a different random number is less 

c  than pcreep.   

      nmutate=0 

      ncreep=0 

      do 70 j=1,npopsiz 

         do 75 k=1,nchrome 

c  Jump mutation 

            call ran3(1,rand) 

            if (rand.le.pmutate) then 

               nmutate=nmutate+1 

               if(ichild(j,k).eq.0) then 

                  ichild(j,k)=1 

               else 

                  ichild(j,k)=0 

               endif 

               if (nowrite.eq.0) write(6,1300) j,k 

               if (nowrite.eq.0) write(24,1300) j,k 

            endif 

 75      continue 

c  Creep mutation (one discrete position away). 

         if (icreep.ne.0) then 

            do 76 k=1,nparam 

               call ran3(1,rand) 

               if(rand.le.pcreep) then 

                  call decode(j,child,ichild) 

                  ncreep=ncreep+1 

                  creep=1.0 

                  call ran3(1,rand) 

                  if (rand.lt.0.5) creep=-1.0 

                  child(j,k)=child(j,k)+g1(k)*creep 

                  if (child(j,k).gt.parmax(k)) then 

                     child(j,k)=parmax(k)-1.0*g1(k) 

                  elseif (child(j,k).lt.parmin(k)) then 

                     child(j,k)=parmin(k)+1.0*g1(k) 

                  endif 

                  call code(j,k,child,ichild) 

                  if (nowrite.eq.0) write(6,1350) j,k 

                  if (nowrite.eq.0) write(24,1350) j,k 

               endif 

 76         continue 

         endif 

 70   continue 

      write(6,1250) nmutate,ncreep 

      write(24,1250) nmutate,ncreep 

c 

 1250 format(/'  Number of Jump Mutations  =',i5/ 

     +        '  Number of Creep Mutations =',i5) 
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 1300 format('*** Jump mutation performed on individual  ',i4, 

     +       ', chromosome ',i3,' ***') 

 1350 format('*** Creep mutation performed on individual ',i4, 

     +       ', parameter  ',i3,' ***') 

c 

      return 

      end 

c 

c####################################################################### 

      subroutine gamicro(i,npossum,ig2sum,ibest) 

c 

c  Micro-GA implementation subroutine 

c 

      implicit double precision (a-h,o-z) 

      save 

c 

      include 'params.f' 

      dimension parent(indmax,nparmax),iparent(indmax,nchrmax) 

      dimension ibest(nchrmax) 

c 

      common / ga1   / npopsiz,nowrite 

      common / ga2   / nparam,nchrome 

      common / ga3   / parent,iparent 

c 

c  First, check for convergence of micro population. 

c  If converged, start a new generation with best individual and fill 

c  the remainder of the population with new randomly generated parents. 

c 

c  Count number of different bits from best member in micro-population 

      icount=0 

      do 81 j=1,npopsiz 

         do 82 n=1,nchrome 

            if(iparent(j,n).ne.ibest(n)) icount=icount+1 

 82      continue 

 81   continue 

c 

c  If icount less than 5% of number of bits, then consider population 

c  to be converged.  Restart with best individual and random others. 

      diffrac=dble(icount)/dble((npopsiz-1)*nchrome) 

      if (diffrac.lt.0.05) then 

      do 87 n=1,nchrome 

         iparent(1,n)=ibest(n) 

 87   continue 

      do 88 j=2,npopsiz 

         do 89 n=1,nchrome 

            call ran3(1,rand) 

            iparent(j,n)=1 

            if(rand.lt.0.5) iparent(j,n)=0 

 89      continue 

 88   continue 

      if (npossum.lt.ig2sum) call possibl(parent,iparent) 

      write(6,1375) i 

      write(24,1375) i 

      endif 

c 

 1375 format(//'%%%%%%%  Restart micro-population at generation', 

     +       i5,'  %%%%%%%') 

c 

      return 

      end 
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