
Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

GENETIC ALGORITHM OPTIMIZATION METHODS IN GEOMETRICAL OPTICS

by

NEAL C. EVANS

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham, in

partial fulfillment of the requirements for the degree of Doctor of Philosophy

BIRMINGHAM, ALABAMA

1999

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

ABSTRACT OF DISSERTATION

GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree ________ Program __

Name of Candidate ___

Committee Chair ___

Title __

This dissertation explores the use of machine learning techniques, concentrating

specifically on genetic algorithms (GAs), for solving beam shaping problems. In order to

judge the effectiveness of this optimization-based method, four increasingly difficult

beam shaping problems are solved. All four of these problems involve using a Gaussian

input beam to a uniformly illuminate either spherical or planar surfaces some distance

away. A computational method, which builds upon proven ray-tracing techniques, is

developed for determining irradiance profiles. This method is the key to quantifying the

efficacy of a beam shaper in terms of a merit function. When this merit function is

coupled with a GA, an optimization technique can be employed.

The GA is able to find a satisfactory solution for all four cases in a significant but

reasonable amount of time. This is particularly interesting since the GA requires little

(often no) user input once the problem is started. In fact, in the last example, the GA is

presented with a very general problem, and is allowed to determine the actual form of

the system required to solve the problem, much as a human designer would. These

examples demonstrate that the GA optimization-based method works, although the first

two problems presented here can be solved in more general ways using analytical

methods. With a general analytical solution, particular cases can be solved rapidly.

However, the third and fourth examples illustrate two problems of such complexity that

Ph.D

.

Physics

Neal C. Evans

David L. Shealy

Genetic Algorithm Optimization Methods in Geometrical Optics

Copyrighted Material

iii
Copyright © 1999 Neal C. Evans

All rights reserved

analytical methods become difficult, if not impossible, to apply. The most promising

applications of GAs lie in these areas.

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

DEDICATION

The light wraps around you in its mortal flame.

Abstracted pale mourner, standing that way

Against the old propellers of the twilight

That revolves around you.1

For Finley, for her undying love and support.

And, for my family, most of all my parents, for providing me with so much.

Copyrighted Material

v
Copyright © 1999 Neal C. Evans

All rights reserved

ACKNOWLEDGEMENTS

I am grateful to my advisor, Dr. David L. Shealy, for the many hours of personal

conversation, guidance and teaching. His example has inspired me to become a better

student of physics, as well as a better person. I appreciate his encouraging me to

pursue those things which excited me, while insuring that I harness these indulgences

to produce something of value. I am also most thankful to Dr. Joseph G. Harrison, Dr.

Yogesh Vohra, Dr. Chris Lawson, Dr. James Buckley and Dr. Ian Knowles for serving

on my committee and providing me with many fruitful avenues of exploration. I also

wish to thank Dr. Vladimir Oliker of the Emory University Department of Mathematics

and Computer Science, who provided me with my first laser-shaping problem: a two-

mirror reflector. I also am indebted to Ken Baker of Optimetrix, 13659 Victory Blvd.,

Van Nuys, CA, 91401, with whom I worked to produce the first problem presented in

this work, the laser shaper/projector system.

I am thankful for the funding provided to me by the U.S. Department of

Education‟s GAANN program, which supported my research and tenure at UAB. Also,

Optical Research Associates, 3280 E. Foothill Blvd., Pasadena, CA, 91107, has

generously provided UAB the use of CODE V, an optical design and testing package, for

research-related endeavors at a substantially discounted educational price. Without

CODE V, this work would not have been possible.

Copyrighted Material

vi
Copyright © 1999 Neal C. Evans

All rights reserved

TABLE OF CONTENTS

 Page

ABSTRACT OF DISSERTATION ... ii

DEDICATION ... iv

ACKNOWLEDGEMENTS ... v

LIST OF TABLES.. viii

LIST OF FIGURES .. ix

INTRODUCTION .. 1

Scope of Applications .. 3
Computational Methods for Irradiance Calculations via Ray-trace Methods 4

THEORY OF OPTIMIZATION .. 14

Overview of Iterative Computational Optimization Methods 14
Genetic Algorithms ... 16
Parallelization of the Genetic Algorithm... 18

APPLICATIONS .. 24

Design and Analysis of a Beam Shaper/Projector .. 24
Design and Analysis of a Two-lens Beam Shaper .. 36
Design and Analysis of a Gradient-Index Shaper .. 40
Design and Analysis of a Free-Form GA-Designed GRIN Shaper 48

CONCLUSIONS .. 56

LIST OF REFERENCES .. 63

APPENDIX A: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A GRADIENT-

INDEX SHAPER ... 73

APPENDIX B: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A FREE-

FORM GA-DESIGNED GRIN SHAPER ... 72

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

TABLE OF CONTENTS (Continued)

 Page

APPENDIX C: CODE SAMPLES FROM THE FORTRAN GENETIC ALGORITHM

DRIVER .. 79

Copyrighted Material

viii
Copyright © 1999 Neal C. Evans

All rights reserved

LIST OF TABLES

 Page

Table 1. Constraints on surface parameters. Each parameter must be

between or equal to the end points of the respective constraint. 30

Table 2. Beam Shaper/Projector System Parameters. ... 35

Table 3. Beam Shaper/Projector Lens Element Parameters ... 35

Table 4. Two-lens Shaper System Parameters. .. 40

Table 5. Two-lens Shaper Lens Element Parameters .. 40

Table 6. Gradient-Index Shaper System Parameters. ... 47

Table 7. Gradient-Index Shaper Lens Element Parameters ... 48

Table 8. Optimized Parameters for the Free-Form GA-Designed GRIN

Shaper problem. .. 52

Table 9. Free-Form GA-Designed GRIN Shaper Parameters. .. 56

Table 10. Free-Form GA-Designed GRIN Shaper Lens Parameters. 56

Copyrighted Material

ix
Copyright © 1999 Neal C. Evans

All rights reserved

LIST OF FIGURES

 Page

Fig. 1. Illustration of Conservation of Energy with a Bundle of Rays (from

Ref. 27). .. 8

Fig. 2. Beam expander with Input Plane and Output Surface. The beam

profile is shaped to be uniform on the Output Surface (from Ref.

14). .. 9

Fig. 3. Determination of .idA From the figure, one can see that

1   i i id and that cos()  out

i i idS d  (from Ref. 14). 12

Fig. 4. Example of the genetic material for a single individual. Values

(Real*8) for each parameter are converted into binary strings,

which are in turn concatenated into one long string, the genetic

material for that individual (from Ref. 14). Individual alleles (the

values that 4 10, , , ,c k A A assume, expressed in binary form) are

kept intact when crossovers occur. .. 19

Fig. 5. Flowchart of the sequential micro-GA. For definitions of

reproduction, mutations, cross-overs and stagnancy see section 0. 20

Fig. 6. Two parallel GA paradigms. In the first setup, the standard GA

paradigm (a), the GA is executed sequentially on the master until

the step where the merit function is evaluated. At this point, the

merit function is evaluated in parallel on the slave nodes. In the

second setup, the subpopulation parallel paradigm (b), the GA

executes normally on several slave machines, which at pre-defined

time send their best individuals to the integrator. The integrator

then redistributes these individuals to the other slave nodes. 22

Fig. 7. Beam-shaping system with ray trace showing the density of rays

increases at the periphery of the Output Surface, as one would

expect to compensate for the Gaussian nature of the input beam.

Both the thin lens element and the shaping element are shown.

The shaping element is determined by the GA (from Ref. 14). 25

Fig. 8. Merit function versus  and N . 200N in this system (from

Ref. 14). .. 29

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

LIST OF FIGURES (Continued)

 Page

Fig. 9. Shaping element showing aspherical surface, which is determined

by the GA. The axial thickness of this element is 6 mm (from Ref.

14). .. 32

Fig. 10. Input beam irradiance profile. The
21 e diameter of the input

beam is 7.882 mm. Integrating ()  over the Input Plane yields

21.1 units, a quantity which must be conserved according to Eq.

(13) (from Ref. 14). .. 33

Fig. 11. Beam profile on Output Surface. The radius (N) of the Output

Surface is 52.5 mm. The mean value of the profile, u , is 2.13x10-3

2rays mm , with a standard deviation of 3.78x10-5. Integrating this

mean value (() constant  u u) over the Output Surface yields a

value of 20.7 units (from Ref. 14). The beam profile is radially-

symmetric. ... 34

Fig. 12. Two-lens beam shaper system with ray trace. The right surface of

Lens 1 and the left surface of Len 2 are shaped by the GA. 38

Fig. 13. Input and Output irradiance profiles for the Two-lens Beam

Shaper. The
21 e diameter of the input beam is 16.0 mm.

Integrating ()  over the Input Plane yields 86.9 units. The

radius (N) of the Output Plane is 10.7 mm. The mean value of

the profile, u , is 0.242
2rays mm , with a standard deviation of

1.86x10-3 rays/mm2, or 0.8% of u . Integrating this mean value (

() constant  u u) over the Output Surface yields a value of 87.0

units. Energy is conserved, as required in Eq. (13). ... 39

Fig. 14. Layout of the gradient-index expander designed by Wang and

Shealy (from Ref. 17). This system provides the inspiration for the

Gradient-Index Shaper problem. ... 42

Fig. 15. Gradient-index shaper system with ray trace. The materials for

Lens 1 and Lens 2 were chosen from a catalog of materials by the

GA. ... 45

ZEqnNum199495

Copyrighted Material

xi
Copyright © 1999 Neal C. Evans

All rights reserved

LIST OF FIGURES (Continued)

 Page

Fig. 16. Input and Output irradiance profiles for the Gradient-Index

Shaper. The
21 e radius of the input beam is 4.0 mm. Integrating

()  over the Input Plane yields 21.7 units. The radius (N) of

the Output Plane is 7.56 mm. The mean value of the profile, u , is

0.121
2rays mm , with a standard deviation of 4.45x10-3.

Integrating this mean value (() constant  u u) over the Output

Surface yields a value of 21.7 units. Energy is conserved, as

required in Eq. (13). .. 46

Fig. 17. A plot showing the best individual in a generation, bestM , as a

function of generation. bestM is measured in arbitrary units. When

bestM „plateaus‟ for a significant number of generations, it can be

assumed that the best solution has been found. .. 53

Fig. 18. Raytrace for the Free-Form GA-Designed GRIN Shaper system.

The GA produced a system with 3 elements and no connectors. 54

Fig. 19. Input and Output irradiance profiles for the Free-Form GA-

Designed GRIN Shaper. The
21 e radius of the input beam is 4.0

mm. Integrating ()  over the Input Plane yields 21.7 units. The

radius (N) of the Output Plane is 12.4 mm. The mean value of

the profile, u , is
-2 24.55 10 rays mm , with a standard deviation

of
31.70 10 , or 3.7% of u . Integrating this mean value (

() constant  u u) over the Output Surface yields a value of 21.9

units. Energy is conserved as required in Eq. (13). .. 55

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

 INTRODUCTION

Recently, the application of machine learning techniques including Neural

Networks and Genetic Algorithms (GAs) to optimization problems has blossomed. Such

techniques hold great promise not only because of their extraordinary efficiency and

flexibility but also because they potentially allow the solution of previously intractable

problems. So long as a fitness landscape2 can be well-defined, a GA can be unleashed to

roam this territory in a incessant search for the best solution. The GA must not,

however, be characterized as a mindless automaton that wanders aimlessly about this

terrain. Indeed, the essence of its value lies in the fact that the “...genetic algorithm

[can] yield computer-based complex adaptive systems that can evolve strategies that no

human being ever devised.”3

Though there are numerous variations of GAs, they all share a central theme:

their search strategy borrows concepts from natural selection and genetics.4 Once

presented with a specific optimization problem, the GA produces a set of potential

solutions. These solutions are referred to as „organisms‟ and a set of organisms is a

„generation.‟ GAs typically start with a randomly distributed seed generation, (0).G

For each generation ()G t , a new generation, (1)G t is produced based on the

strengths and weaknesses of ().G t Organisms are represented by a single string, or

chromosome, which is built from the values of the parameters to be optimized for a

particular problem.5 These techniques endow GAs with several unique features, as

described by Goldberg:6

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

1. GAs work with a coding of the parameter set, not with the parameters

themselves.

2. GAs search from a population of points, not a single point.

3. GAs use payoff …[merit function] information only, not derivatives or other

auxiliary knowledge.

4. GAs use probabilistic transitions rules, not deterministic rules.

This evokes the intriguing thought of employing GAs to find solutions to

problems in optics and optical design where analytical methods are difficult to apply

and other optimization techniques are extremely inefficient or fail to yield good

solutions altogether. As a first step, one must develop a GA optimization method and

apply it to several well-understood problems. The key to this “proof-of-principle” stage

lies in the fact that these problems have been attacked from a number of different

perspectives. Not only does this provide a basis for judging the efficiency of the GA

relative to other optimization techniques, but also this answers to the fundamental

question “Does this method work?” For the applications presented herein, a GA method

is developed that can be used to design laser beam-shaping systems that convert

Gaussian input irradiance profiles to other specified profiles, typically uniform output

profiles.

The laser beam-shaping system problem can be solved by a number of different

methods, some of which are numerical and some of which are analytical. Some even

employ a combination of both. Also, there are several different classes of beam-shaping

systems, the most popular being those using diffractive elements7,8,9,10 and those using

refractive elements.11,12 Reflective systems have also been produced.13 The GA method

can be used to optimize most systems of the above classes, which will be demonstrated

in this word by the solution of several laser profile-shaping problems. The first three

problems define the „proof-of-principle‟ stage. Once it has been demonstrated that

indeed the GA method can find solutions to these problem in a reasonably efficient

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

manner, the GA will be used to produce two entirely unique solutions to a difficult

problem, which is presented in the last sections.

Scope of Applications

For the first problem, the GA determines the shape of one surface of a beam-

shaping element such that the wavefront of a beam entering the system is modified to

have a uniform irradiance profile on a surface some distance away.14 To increase the

complexity of the problem a bit, the beam is shaped such that it is uniform on a

spherical surface. Thus, the system is diverging and the non-paraxial aspects of the

system must be accounted for in subsequent irradiance calculations. A similar problem

has recently been addressed in the literature using diffractive elements and a

parametric optimization method.15

For the second problem, the GA is given two aspherical surfaces to shape, each

respective surface being part of a separate shaping element. The GA must do this with

the constraints that the outgoing beam is parallel to the optical (Z) axis and that it

has a specified radius. This problem is designed to mimic the system designed by Jiang,

Shealy and Martin16. This should make for an interesting comparison of the efficiency

of the two methods, in addition to demonstrating whether multiple solutions to the

problem exist.

The final two problems inspired by a gradient-index shaping system designed by

Wang and Shealy.17 For these problems, the GA not only must determine shaping

attributes such as element thickness and surface shape, but also must choose gradient

glass types from a catalog. Since the glass type can only be chosen from a finite set of

values, the parameter that describe the glass type is discrete. Many conventional

optimization techniques work in a continuous parameter space, since they are often

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

driven by first- and second-order derivatives. The ability to choose from discrete

parameters is a particularly powerful feature of the GA, relative to other optimization

codes. In the final application, the GA is given creative latitude in determining that

actual makeup of solution to the given problem. GA method used here is not a unique

application in optics. Indeed, it should be noted that several other examples of GA-

designed systems can be found in the optics literature.18,19 In the next sections, the

fundamental principles governing GA optimization are introduced by describing there

application to the problems described above.

Computational Methods for Irradiance Calculations via Ray-trace Methods

Fundamental to laser beam-shaping computations is a fast, accurate means of

determining irradiance (energy per unit area per unit time) profiles at different

locations in an optical system. To do this, one must start with first principles: energy

must be conserved in a non-dissipative optical system. This principle is mathematically

expressed in the form of the energy conservation law. The energy conservation law has

broad application, from designing reflective beam shapers via analytical differential

equation methods to the development of finite-element mesh methods for the design of

beam-shaping holograms.20,21,22 In order to employ the energy conservation law, the

concepts of rays and wavefronts must be developed as well as a description of how rays

and wavefronts traverse an optical system. These concepts are fundamental to

geometrical optics, and many discussions on this subject can be found in the

literature.23,24,25,26 In fact, the derivation presented below follows closely a discussion

developed by Shealy.27 Remembering that the ultimate goal is to describe the

irradiance on defined surface, the optical field must be determined throughout the

system. As described by Shealy, the optical field is a local plane wave solution of

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

Maxwell's equations for an isotropic, non-conducting, charge-free medium. It is a

solution to the scalar wave equation28, 29

 2 2 2

0 () 0  n k e r , (1)

where ()e r represents the components of the electric field at any point r , n is the index

of refraction at r , and 0k is the wave number in free space. The wave number is

described as follows:

0 02 k c   , (2)

where  is the frequency of the wave, c is the speed of light, and 0 is the wavelength

of incident light. Assume that a solution to Eq. (1) can be written as

 0 0() () exp ()e e ik Sr r r (3)

where 0 ()e r and ()S r are unknown functions of r . Substituting Eq. (3) into Eq. (1) and

performing the indicated operations, one finds that the following conditions must be

satisfied by ()S r and 0 ()e r (neglecting term proportional to
2

01 k):

 
2 2 S n and (4)

2 2

0 0 02 0    e S e e S . (5)

Equation (4) , known as the eikonal equation, is a fundamental relation in geometrical

optics. Surfaces described by

(, ,) .S x y z const (6)

are known as the geometrical wavefronts. The surfaces represent constant phase

solutions to Eq. (3). The concept of optical rays is derived from geometrical wavefronts:

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

rays always are normal the wavefronts in isotropic media. A unit vector normal to the

wavefront and along a ray at the point r is given by

()
()

()





S

S

r
a r

r
. (7)

Coupling this with the eikonal equation, one finds

()
()

()



S

n

r
a r

r
. (8)

Equation (8) defines a ray vector at the point r .

As illustrated in Ref. 26, Eq. (5) can be recognized as one form of the geometrical

optics intensity law for the propagation of a bundle of rays. To see this, one starts by

rewriting Eq. (5) using the vector identity ()    f f fv v v , which results in

   2 2

0 0 0   e S e na . (9)

Recognizing that the energy density of a field is proportional to the square of the field

amplitude
2

oe and that the intensity I is equal to energy density of the field times the

speed of propagation within medium, then Eq. (9) can be written as

  0 I a . (10)

Multiplying Eq. (9) by the constant  4c  for CGS units gives the correct dimensions

for intensity.30 Equation (10) expresses conservation of radiant energy for non-

conducting medium. Integrating Eq. (10) over a tube surrounding a bundle of rays31 as

illustrated in Fig. 1 gives and applying Gauss' theorem on that result yields

1 1 2 2I dA I dA . (12)

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

Equation (12) expresses conservation of energy along a ray bundle between any

two surfaces intersecting the beam and is a basic equation used to the laser beam

shaping systems presented herein. To employ energy conservation for the systems

here, the irradiance (irradiance is used interchangeably with intensity) profile of a

bundle of rays striking the input pupil is defined by a radially symmetric function () 

. These rays propagate through the beam profile-shaping system (the „black box‟) and

exit to strike the Output Surface. The irradiance distribution on the Output Surface is

represented by the function ()u . Assuming no energy is dissipated by the system, Eq.

(12) (re-written here as it is before applying Gauss‟ theorem) must be satisfied:

   ˆ ˆ() () () () () () ,       
in in out out

I O

E da u dA   n v n v (13)

where E is the total energy entering the system and I and O are the Input Plane and

Output Surface, over which the respective integrations occur. The irradiance function

on the Input Plane, ()  is the same as 1I in Eq. (12) and irradiance function on the

Ouput Surface, ()u is 2I . Also, ˆ ()in n and ˆ ()out
n are the normal vectors on the

input and output surfaces, respectively. ()in v and ()out
v are unit vectors along the

direction of an individual ray (striking the input surface at radial height  , and the

output surface at radial height ) at the input and output surfaces, respectively. See

Fig. 2 for further elaboration of terms in Eq. (13). da and dA are derived below.

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

Source

1 1I dA

2 2I dA

Fig. 1. Illustration of Conservation of Energy with a Bundle of Rays (from Ref. 27).

 Copyrighted Material 9

Copyright © 1999 Neal C. Evans

All rights reserved

Beam shaping

system

Input Plane

Output Surface

 i

r

d i

vi

in

ni

in

R

v i

out

n i

out

 i

out

z

dai

dA i

i
iout

Fig. 2. Beam expander with Input Plane and Output Surface. The beam profile is shaped to be uniform on the Output Surface

(from Ref. 14).

 Copyrighted Material 10

Copyright © 1999 Neal C. Evans

All rights reserved

Balancing the radiant energy striking differential ring da with the radiant energy

exiting differential ring dA , as required by Eq. (13), one can see that

 
 

ˆ () ()
() () .

ˆ () ()

  
 

  

in in

out out

da
u

dA
 

n v

n v
 (14)

To determine the ratio /da dA in Eq. (14), N rays are traced through the system,

where N is a reasonably large number, though not so large as to be computationally

expensive. For this application, 200N is chosen, which gives adequate resolution for

the input and output profiles. Each ray enters parallel to the optical (Z-) axis at a

specified height, i , where the set of i are distributed equally across the radius of the

Input Plane according to the following function:

, 0 .
 

  
 

i

r
i i N

N
 (15)

Each ray will exit the system and strike a point on the Output Surface, as shown in Fig.

2. At the point where the ray strikes the Output Surface, i , the axial distance from

the optical axis, and i , the angle between the unit vector normal to the Output

Surface at the intercept point and the optical (Z-) axis, are measured. Thus, an array

with 3N members (3 columns: i , i , i , and N rows) is populated from ray trace

data.

One can see in Fig. 2 that ida is given by 2 i id   , where

1. i i id   (16)

The definition of id in this manner is arbitrary; definitions such as 1 i i id   or

1 1  i i id   would be just as effective. Furthermore, the subscript i is introduced

 Copyrighted Material 11

Copyright © 1999 Neal C. Evans

All rights reserved

to emphasize the numerical nature of the solution to the now discrete function in Eq.

(14). Calculation of idA is somewhat more complicated, since the Output Surface is a

not flat like the Input Plane. In general, idA is given by 2 i idS , where idS is found

by referring to Fig. 3:

.
cos


 i

i out

i

d
dS


 (17)

Also, it is clear from Fig. 2 and Fig. 3 that

ˆ () () cos(()) in in ini  n v and (18)

ˆ () () cos(())    out out outin v . (19)

Combining these observations with Eqs. (14)-(17), one has

 
 1

1

cos() cos()
() .

cos() ()





 
   

   

in out

i i i i i

i i out

i i i i

i
u

i

   
  (20)

In the examples presented herein, the input irradiance is assumed to be Gaussian,

measured in units of rays per unit area:

 2
() exp , i i   (21)

where  is a unitless quantity given by
2 22 i N  . Here, the beam waist of the

incoming beam is expressed by N , and is defined as the radius of the circle where the

irradiance drops to
21 e of the central irradiance. The N rays that are traced through

the system are distributed uniformly over the Input Place according to Eq. (15). Though

a variety of input profiles may be used with this method, a Gaussian input profile is

chosen because it describes typical laser profiles when the laser is in the fundamental

 Copyrighted Material 12

Copyright © 1999 Neal C. Evans

All rights reserved

i

 i1

R

R

ni
out

v i

out

1

z

Output Surface

 i
out

d i

dSi

v i

out

Fig. 3. Determination of .idA From the figure, one can see that 1   i i id and

that cos()  out

i i idS d  (from Ref. 14).

 Copyrighted Material 13

Copyright © 1999 Neal C. Evans

All rights reserved

mode (TEM00). Eq. (20) expresses the output beam irradiance in terms of the input

beam irradiance times a ratio of areas expressing the beam expansion as a result of ray

propagation through the optical system. Eqs. (20) and (21), along with the ray trace

array, provide an accurate means of calculating the beam profile over any reasonable

surface. The accuracy of this method has been verified by calculating the profiles for

several benchmark systems.16,17 Calculations of output beam profiles using Eq. (20) are

in close agreement with the profiles given in the benchmark papers. Now, a merit

function can be developed based on Eq. (20) which allows the GA to distinguish between

systems with uniform intensity profiles (which are desired) and non-uniform profiles.

This is done in the sections that follow.

 Copyrighted Material 14

Copyright © 1999 Neal C. Evans

All rights reserved

THEORY OF OPTIMIZATION

Generally, the idea behind optimization is that one has some function f which

may be evaluated easily, usually computationally. This function is expressed in terms

of several variables which may be discrete or continuous in nature. One wishes to find

the values of these variables which make f assume either its maximum or minimum

value. The difficulty of the problem is related to whether one is searching for local

extrema, of which there may be many, or the global extrema, which represent the

absolute best solutions. The complexity of the problem is related to the number of

variables which make up f , in addition to the ease with which f can be calculated.32

The greater the complexity of the problem, the longer it takes to arrive at a solution.

Thus, search algorithms which arrive at solutions quickly are to be coveted, which is

evident by the voluminous amount of research regarding the subject present in the

literature.33,34 In this work, the GA search method is presented as one of these

treasured methods, but it should be noted that other algorithms exist which produce

similar, if not superior performance. Two popular alternative methods, simulated

annealing and the Tabu search35 are discussed below.

Overview of Iterative Computational Optimization Methods

Though there are myriad optimization techniques to choose from, methods such

as GAs and Simulated Annealing are of particular interest because of their ability to

solve combinatorial minimization problems. The key feature of such problems is that

 Copyrighted Material 15

Copyright © 1999 Neal C. Evans

All rights reserved

one or more of the parameters that make up the merit function (which is to be

maximized) are discrete, in the sense that they only can assume particular values from

a pre-defined set of allowable values. Thus, instead of an N dimensional space made

up of N continuous parameters, one is presented with a parameter space whose

complexity is factorially large—so large in fact that it cannot be completely explored.36

Without a continuous merit function, concepts such as “downhill” and “uphill” lose their

meaning and other optimization techniques, such as the Simplex Method,37 can no

longer be applied. For example, in the problem presented in Design and Analysis of a

Gradient-Index Shaper and Design and Analysis of a Free-Form GA-Designed GRIN ,

the glass types of the lens elements in the system are chosen from a fixed set of

gradient-index materials found in a manufacturer‟s catalog. It is here that GAs and

Simulating Annealing techniques excel, though they also can be applied to problems

that are purely continuous as well. In the literature, there are numerous examples of

problems solved using these techniques,38,39 as well as research that compares the

performance of one or more of these methods on the same class of problems.40,41,42,43 It

seems that of the three methods discussed here, no one method is necessarily more

efficient than the others, though it does appear that GAs and the Tabu search tend to

arrive at solutions more quickly than Simulated Annealing methods, at least in the

papers cited here.

It should be noted that several commercial optical design and analysis packages

implement these techniques in their optimization routines to varying degrees. OSLO44,

for example, uses an „adaptive simulating annealing‟ method. ZEMAX45 and CODE V46

also contain proprietary global optimization methods. The problem with these

implementations, among other things, is that the merit functions in these packages are

 Copyrighted Material 16

Copyright © 1999 Neal C. Evans

All rights reserved

oriented towards imaging systems (ZEMAX, however, allows for user-defined merit

functions computed by macros or an external programming interface), limiting one‟s

ability to manipulate the merit function for one‟s own purpose. Also, since the makers

of these packages keep their optimization codes proprietary, one‟s ability to tweak those

routines is all but eliminated. More ambitious goals like parallelization of the

optimization code (see Parallelization of the Genetic Algorithm below) becomes

extremely difficult, at best.

Genetic Algorithms

Since GAs are based on a biological paradigm, a lot of the GA nomenclature is

borrowed directly from evolutionary biology. The reader may find it useful to have some

of this jargon expressed in terms more familiar to the optics community. As discussed

above, GAs produce a finite number of test solutions to a problem. Individually, these

solutions are referred to as „organisms‟ (or just „individuals‟), and collectively as a

„generation.‟ A „generation‟ is essentially an iteration. With each iteration, the merit

function , M , is evaluated for each member of a generation. There may be a few as five

or as many as hundreds of individuals per generation, depending on the code used and

how it is configured. For the applications explored here, there are typically five or ten

individuals in a generation. A new generation of child systems is produced from the

genetic material of the parent generation (the specifics of this process are described

below). An individual‟s genetic code represents a particular system prescription. For

example, in the Beam Shaper/Projector example presented in Design and Analysis of a

Beam Shaper/Projector, the six parameters that collectively define one surface of the

beam-shaping element are concatenated into a string (i.e., genetic code). Thus, with

 Copyrighted Material 17

Copyright © 1999 Neal C. Evans

All rights reserved

each iteration, five or ten new system prescriptions are produced and their respective

merit functions evaluated.

The GA method developed here is based on a Micro-GA code.47,48,49 Micro-GAs

have several features which distinguish them from other GA codes. The most

prominent of these features is the fact that Micro-GAs can operate efficiently with small

generation sizes (on the order of 10 individuals per generation). This is important for

the applications presented here, since evaluation of the merit function for each

individual is a very time-consuming process. The Micro-GA is able to work with small

generation sizes by checking for „stagnancy‟ in each generation it produces. Stagnancy

is determined by taking the average value of the merit function for all the individuals in

a generation, ()M t , and comparing it to average merit functions values for N parent

generations, (1), (2), ..., ()  M t M t M t N . If these values do not differ significantly

(a parameter which can be set in the Micro-GA, and is usually „tweaked‟ at the

beginning of a problem to produce the most efficient code), then the population is

defined as stagnant. Essentially, when stagnancy is detected, the code assumes that

the GA is stuck in a local minima and attempts to add some randomness to the process.

When such a situation arises, the GA picks the best of the individuals in a generation,

kills the remaining and replaces them with new, randomly-selected individuals in the

child generation.

„Reproduction‟ is defined as producing a child generation of new individuals from

the genetic material of a parent generation. The individual with the highest value of

M in a particular generation is most likely to have its genetic material passed on to the

next generation. The „genetic material‟ for a particular individual is defined by

concatenating the binary value for each parameter to be optimized into a binary string

 Copyrighted Material 18

Copyright © 1999 Neal C. Evans

All rights reserved

(consists of only ones and zeros). See Fig. 4 for an example. New generations are

created by a „crossover operator‟, which swaps chunks of genetic material (strings)

between two or more individuals in a generation. With the Micro-GA code, crossovers

are done in a manner that maintains individual „alleles‟. An allele is the particular

value that a parameter assumes, expressed in string format.50 When a crossover occurs,

the strings that represent alleles are not broken into pieces, but are transferred from

one individual to another intact. Another operation the GA performs is „mutation.‟

Here, the GA randomly selects one or several bits in an allele, and changes the state of

these bits. Since the string is binary, this amounts to operating on the bit with „Not‟

(not 0 = 1, not 1 = 0). Mutation add a built-in randomness to the GA method, which

helps the GA avoid local minima. Because of the stagnancy-checking feature it employs,

the Micro-GA allows one to avoid the constant tweaking of GA parameters (e.g.,

crossover and mutation rates) which is often necessary with conventional routines. The

flowchart for this GA, referred to as the sequential GA, is shown in Fig. 5.

Parallelization of the Genetic Algorithm

Given that the total execution time for the problems discussed in this work is

nearly seven hours, it is important to increase the efficiency of the GA method. This can

be accomplished by having the code execute in parallel, something facilitated by the

nature of the GA. Parallel implementations of GA codes are common in the literature,

and several different strategies for parallelization exist.51,52 The two most popular

strategies are described below.

For the first strategy, it is interesting to note that, generally, the most

computationally intensive step of the optimization process involves the evaluation of the

merit function. In these applications, this involves calling optical simulation or optical

 Copyrighted Material 19

Copyright © 1999 Neal C. Evans

All rights reserved

c k A4 A6 A8 A10

11010010000000011001010000000001111001100111111111111101111011101001
000011...

18.4774

-0.2104 -.899960E-03 0.100000E-04

-.439161E-07 0.644856E-08

Real(8) to binary conversion

Fig. 4. Example of the genetic material for a single individual. Values (Real*8) for

each parameter are converted into binary strings, which are in turn concatenated into

one long string, the genetic material for that individual (from Ref. 14). Individual

alleles (the values that 4 10, , , ,c k A A assume, expressed in binary form) are kept

intact when crossovers occur.

 Copyrighted Material 20

Copyright © 1999 Neal C. Evans

All rights reserved

Initialize GA by
randomly picking
new individuals

Evaluate Merit
Function for each
individual in
generation

Perform genetic
operations (reproduction,
mutations, cross-overs);
produce new generation

Is the population
stagnant? (Micro-GA
check)

Keep best individual and
replace the remainder with
randomly-selected individuals

End

Y

N

Y

N

Step eligible for parallelization

Termination

criterion reached?

Fig. 5. Flowchart of the sequential micro-GA. For definitions of reproduction,

mutations, cross-overs and stagnancy see Genetic Algorithms.

 Copyrighted Material 21

Copyright © 1999 Neal C. Evans

All rights reserved

design packages, such as CODE V, which are external the Genetic Algorithm code itself.

For example, in the problems presented herein, the evaluation of the merit function

involves calling CODE V and tracing 200N rays for each system. The calculation

time for a single generation with 10 individuals takes about 9 seconds (on a Sun Ultra 1

170 with 64M of RAM). Of this, about 8 seconds on average is spent in CODE V. The

evaluation of the merit function step is an obvious candidate for parallelization. Thus, a

potential parallel scheme is one where the GA executes sequentially on one machine,

the master node, until it reaches the point where the merit function is to be evaluated.

Here, the master initiates processes on each of the slave nodes. The slave nodes, in

turn, evaluate the merit functions for individuals in the generation given to them in

parallel and return the results to the master. Once all the merit functions are

evaluated, the GA code runs normally on the master and executes all GA-related

operations, producing the next generation. This parallel scheme, known as the

Standard Parallel GA Paradigm, is shown in Fig. 6, along with an alternative parallel

scheme, which is explained below.

An alternative scheme, the subpopulation parallel paradigm, essentially runs

independent instantiations of the GA code on each node. With time, different nodes

produce different best individuals with varying degress of fitness. The best individuals

are periodically sent to a central bookkeeping node, the “integrator”. The integrator

finds the “best of the best” and distributes this champion to the other slave nodes, where

the genetic material of this champion is assimilated by the local subpopulation. If there

are enough nodes, each subpopulation can execute on a pod of machines using the

Standard Parallel GA Paradigm outlined above. Thus, one must test the efficiency not

 Copyrighted Material 22

Copyright © 1999 Neal C. Evans

All rights reserved

Master Node:
Executes main

GA sequence

Slave Node: Evaluates
Merit Function

10/100 Mbps Ethernet

Slave Node: Evaluates
Merit Function

Slave Node: Evaluates
Merit Function

Slave Node: Evaluates

Merit Function

Slave Node: Evaluates Merit
Function

Integrator Node: Distribute best
individual to subpopulation nodes

Subpopulation Node:

Executes sequential GA

Subpopulation Node:

Executes sequential GA

Subpopulation Node:

Executes sequential GA

Subpopulation Node:
Executes sequential GA

Subpopulation Node:
Executes sequential GA

10/100 Mbps Ethernet

b. Subpopulation Parallel Paradigm

a. Standard GA Parallel Paradigm

Fig. 6. Two parallel GA paradigms. In the first setup, the standard GA paradigm

(a), the GA is executed sequentially on the master until the step where the merit

function is evaluated. At this point, the merit function is evaluated in parallel on the

slave nodes. In the second setup, the subpopulation parallel paradigm (b), the GA

executes normally on several slave machines, which at pre-defined time send their best

individuals to the integrator. The integrator then redistributes these individuals to the

other slave nodes.

 Copyrighted Material 23

Copyright © 1999 Neal C. Evans

All rights reserved

only of the two paradigms individually, but also a hybrid scheme that incorporates both

paradigms.

One could run the parallel GA (PGA) on a inhomogeneous cluster of

workstations on the 10/100 Mbps local-area network. Message passing among nodes

could be accomplished using the MPI-253,54 libraries, making the PGA code easily-

scalable to high-performance massively-parallel systems. For most research, however,

scaling to parallel supercomputers is not feasible since evaluation of the merit function

for common problems requires calling proprietary software packages such as CODE V,

for which the source code is not (freely) available.55 If problems are chosen where all

source code is available, including that for evaluating the merit function, the GA can be

ported to a supercomputer environment with (relatively) little modification.

 Copyrighted Material 24

Copyright © 1999 Neal C. Evans

All rights reserved

APPLICATIONS

One key feature of the GA method is its broad applicability. Using the theory

and tools developed above, one can adapt the GA to solve a multiplicity of problems.

The problems presented below are chosen not only to demonstrate this advantage, but

to do so while building a logical, concise method that builds from simple to more

complex applications. Furthermore, these problems are chosen from current literature

and provide a means to compare the solutions generated by the GA with solutions

generated by other methods. Hopefully, this will provide insight into where the GA

methods are appropriate and where they are of little advantage. The three problems

chosen here are Design and Analysis of a Beam Shaper Projector, Design and Analysis

of a Gradient-Index Shaper and Design and Analysis of a Two-lens Shaper.

Design and Analysis of a Beam Shaper/Projector

The general goal here is to modify the shape of a lens element (the „shaping

element‟) to uniformly illuminate a spherical surface some distance away. See Fig. 7 for

a ray trace of the system. For this particular application, the use of a Genetic Algorithm

is perhaps a tad overzealous, considering that other more established design methods

could be employed to produce solutions both easily and efficiently. The goal, however, is

a long-term one: the GA technique will be used to attack systems that are difficult to

solve with more conventional methods. For example, certain holographic projection

systems have fitness landscapes with 20 or more dimensions and extremely complex

 Copyrighted Material 25

Copyright © 1999 Neal C. Evans

All rights reserved

Zoomed
Area (above)

Thin Lens
Element

Shaping
Element

Output Surface

Scale: 0.58

Input Plane

Fig. 7. Beam-shaping system with ray trace showing the density of rays increases at

the periphery of the Output Surface, as one would expect to compensate for the

Gaussian nature of the input beam. Both the thin lens element and the shaping

element are shown. The shaping element is determined by the GA (from Ref. 14).

 Copyrighted Material 26

Copyright © 1999 Neal C. Evans

All rights reserved

merit functions, making their solution with conventional methods very tedious.56 For

the short-term, it must be established that the GA technique produces good solutions in

a reasonably efficient manner. This is accomplished by the application of the GA

technique to simple, well-understood systems. The insights gained by this application

will provide a picture of the fundamental mechanisms that govern this and the nuances

involved in its proper implementation.

The application of a GA generally must satisfy two prerequisites. First, one

must identify those parameters that fundamentally characterize the system. The

parameters must be numerically quantifiable and the modification of these parameters

should have direct consequence on the system itself. Second, one must identify those

features of a system which best describe the fitness (or „merit‟) of the system. This could

be one particular attribute, such as focal length, or, on the other extreme, could involve

the blending of many different attributes, each with different weights and measures of

influence.

In the application of the GA to the beam profile-shaper, one surface of a

refractive lens is modified such that the irradiance profile over a spherical image

surface is uniform (that is, () constant u in Eq. (14)). The rotationally-symmetric

lens surface is characterized by the conventional surface equation used in optics:

2 5
2

2
2 2

2

() ,
1 1 (1) 

 
  

 j

j

j

c h
z h A h

k c h
 (22)

where z is the sag of the surface, c is the curvature of the surface, k is the conic

constant and 4 10A A are aspherical deformation coefficients. z is an even function of

h , the surface radial distance from the optical axis. The choice of this function allows

the GA great flexibility in determining the shape of the lens surface, depending on the

 Copyrighted Material 27

Copyright © 1999 Neal C. Evans

All rights reserved

number of deformation coefficients included in the optimization process. One might

speculate that the lens surface must be highly aspherical, based on results from similar

beam-shaping systems, such as that discussed in Ref. 16. Furthermore, it is desirable

to provide the GA with a large (multi-dimensional) parameter space to explore, since

this is where GAs are especially powerful. Thus, the GA is given six parameters to

optimize: 4 6 8, , , , ,c k A A A and 10A .

Finally, the GA must be given a means of distinguishing between good systems

and bad systems. In this application, a uniform irradiance profile over the Output

Surface is desired. The Output Surface is a sphere with a radius of 84.12 cmR .57

Furthermore, it is required that the exit pupil have a radius of 50 cm. To accomplish

this, the following merit function is defined:14

 
21

exp 50 ,   
 NM s


 (23)

where

 
2

1

1
()



  
N

i

i

u u
N

 (24)

and

1

1
().



 
N

i

i

u u
N

 (25)

()iu is defined in Eq. (20). In Eq. (23), N is the radial height (as measured from the

optical axis) of the marginal ray on the Output Surface, which defines the exit pupil in

this case. The exponential function is chosen since, for this problem, one wants the

merit function to peak sharply at 50 cmNP . The exponential accomplishes this

 Copyrighted Material 28

Copyright © 1999 Neal C. Evans

All rights reserved

nicely, but functions other than the exponential may have been chosen for the same

purpose. s determines the sensitivity of the merit function to the exit pupil radius

constraint: the smaller the value that s assumes, the more prominent the exponent

becomes. In this example, s is set to 0.01 . This value is adjusted on occasion while the

GA is executing to insure that the pupil radius constraint is satisfied. In Eqs. (24) and

(25), u is the “mean” of the values of the output intensity function, ()iu over N

points on the Output Surface. As the beam profile on the Output Surface becomes more

uniform,  approaches zero, and M increases substantially. Also, as the exit pupil,

which is measured by N , approaches 50 cm , the value of M peaks as a result of the

exponential in Eq. (23). This is illustrated in Fig. 8. Systems with the desired

characteristics—a uniform beam profile on the Output Surface and an exit pupil of

50 cm —will have higher values of M, which is precisely what is required. The GA will

find those systems with the highest value of M.

The beam-shaping element consists of two surfaces. The first surface is flat and

the second surface, of course, has its shape determined by the GA. The GA starts by

randomly choosing, within pre-determined constraints, values for the six surface-shape

parameters to be optimized. In each generation, ten individuals are produced (see

section 0 for explanation of GA nomenclature). The parameters for each individual are

passed to a ray-tracing routine (CODE V is used for ray tracing in this application)

where N rays are traced and the value of the merit function, M , is calculated for each

individual as above. See APPENDIX A: CODE SAMPLES FROM DESIGN AND

ANALYSIS OF A GRADIENT-INDEX SHAPER for an example of a CODE V macro

 Copyrighted Material 29

Copyright © 1999 Neal C. Evans

All rights reserved

N



M

Fig. 8. Merit function versus  and N . 200N in this system (from Ref. 14).

 Copyrighted Material 30

Copyright © 1999 Neal C. Evans

All rights reserved

used to evaluate the merit function and call the GA library. The constraints on each of

the surface-shape parameters are given in Table 1.

Table 1. Constraints on surface parameters. Each parameter must be between or

equal to the end points of the respective constraint.

The GA code was executed simultaneously on four Sun Sparcs, all running

Solaris 2.6. The constraints were modified in real-time so that each instantiation of the

GA code could search different regimes of the parameter space. Once it became

apparent that a particular regime contained better solutions, the constraints were

narrowed on all machines to search that regime more thoroughly. The constraints

given in Table 1 represent the final values of these constraints. Also, when one machine

found an individual that was substantially superior to the best individuals on the other

three machines, the code on the three other machines was re-initialized using a restart

file from the machine with the superior individual. This amounts to a primitive form of

parallel processing, an issue which will be better addressed in future applications (see

Parallelization of the Genetic Algorithm). Total processing time was not rigorously

recorded but was on the order of 12 hours. The fastest machine of the four, a Sun Ultra

1 170 with 64M of RAM, found the best individual. The search was stopped when no

Surface Parameter Constraint

c 10 to 20

k 1.0 to 0

4A 3 31.0 10 to1.0 10  

6A 5 51.0 10 to1.0 10  

8A 6 61.0 10 to1.0 10  

10A 7 71.0 10 to1.0 10  

 Copyrighted Material 31

Copyright © 1999 Neal C. Evans

All rights reserved

significantly better individuals were found over a period of five hours, so the best

individual actually was discovered after about 7 hours of proN cessing time.

The final profile-shaping system is shown in Fig. 7, with the GA-determined

shaping element shown in Fig. 9. In Fig. 7, one notices that the GA-determined shaping

element is actually the second element in the system; the fiu rst
5 23.78 10 rays/mm

element (the „thin lens element‟) is an artifact of the initial design requirements and is

not part of the optimization process. The purpose of the thin lens element is to focus the

incoming collimated beam such that the Numerical Aperture of the shaping element is

0.7. The two surfaces of the thin lens element are spherical and the shape factor is set

such that spherical aberration is minimized.58 The shape of the input beam profile is

shown in Fig. 10. It is assumed that the laser beam is circular and is operating in the

fundamental mode, TEM00. In Fig. 11, one can see that irradiance on the Output

Surface is nearly uniform, with a average value, u , of
32.13 10 rays/mm2. To check

for self-consistency, the irradiance functions, ()  and ()u , are integrated over the

Input Plane and Output Surface, respectively. The results of these integrations are in

close agreement, as expected. The uniformity of the output profile can be characterized

by the standard deviation from the mean value of the points that determine the output

profile. The standard deviation for this data set is , which is 1.8% of . The general

parameters for the system are given in Table 2, along with specific parameters for the

shaping element and thin lens element in Table 3.

 Copyrighted Material 32

Copyright © 1999 Neal C. Evans

All rights reserved

GA-determined

surface

z

Fig. 9. Shaping element showing aspherical surface, which is determined by the GA.

The axial thickness of this element is 6 mm (from Ref. 14).

 Copyrighted Material 33

Copyright © 1999 Neal C. Evans

All rights reserved

 ()

, mm

Fig. 10. Input beam irradiance profile. The
21 e diameter of the input beam is 7.882

mm. Integrating ()  over the Input Plane yields 21.1 units, a quantity which must

be conserved according to Eq. (13) (from Ref. 14).

 Copyrighted Material 34

Copyright © 1999 Neal C. Evans

All rights reserved

u()

, mm

Fig. 11. Beam profile on Output Surface. The radius (N) of the Output Surface is

52.5 mm. The mean value of the profile, u , is 2.13x10-3
2rays mm , with a standard

deviation of 3.78x10-5. Integrating this mean value (() constant  u u) over the

Output Surface yields a value of 20.7 units (from Ref. 14). The beam profile is radially-

symmetric.

 Copyrighted Material 35

Copyright © 1999 Neal C. Evans

All rights reserved

Table 2. Beam Shaper/Projector System Parameters.

Parameter Value

Wavelength 441.57 nm

Radius of the input beam (Entrance Pupil Diameter) 3.9441 mm

Radius of the output aperture 52.5 mm

Glass type for two lens elements Ohara slah53

Index of ambient medium (air) 1.0

Gaussian constant  in Eq. (21) 0.129
2mm

Object distance Infinity

Image distance from shaping surface 242.9 mm

Table 3. Beam Shaper/Projector Lens Element Parameters

The GA method produced the desired system--that is, a system with a uniform

irradiance profile on the spherical Output Surface and with an exit pupil very close to

50 mm--in a reasonably efficient manner and while requiring virtually no user input.

The GA started with a randomly defined system and found a good solution in about 7

hours. The self-consistency check, which involves integrating the input irradiance

 Thin Lens Element Shaping Element

Parameter Left

Surface

Right

Surface

Left Surface Right Surface

Aperture Radius 8.0 mm 8.0 mm

Thickness 1.0 mm 49.1 mm 6.0 mm 242.9 mm

Vertex radius (1 c

)

36.606 mm 359.72 mm infinity 14.235 mm

Surface type spherical spherical spherical aspherical

Conic constant (k) 0.0

4A -0.66411x10-3 mm

6A 0.12400x10-5 mm

8A -0.31156x10-6 mm

10A -0.61495x10-8 mm

 Copyrighted Material 36

Copyright © 1999 Neal C. Evans

All rights reserved

function, ()  , over the Input Plane and integrating the output irradiance function,

()u , over the Output Surface, indicates energy is conserved as required by Eq. (13).

The small difference in the two values (1.9% error) can be attributed the small

deviations from the mean (u) in the output irradiance profile data set, as shown in the

previous paragraph. Nevertheless, this error would certainly fall within an acceptable

range of fabrication for an aspherical surface such as those in this problem.59

This application illustrates the ability of GAs to solve difficult problems,

suggesting the GA may be useful in solving more complex and vexing problems in

optics. The efficiency of the GA method can be enhanced by introducing parallelism into

the GA code. The most computationally expensive step in the GA routine is the

calculation of the merit function, which requires N rays to be traced through the system

for each individual in a generation. This is done in serial and no other part of the code

can execute until the merit function has been calculated. If merit functions for various

individuals are calculated in parallel on several slave machines simultaneously,

allowing the GA to run unfettered on a master machine, the efficiency of the overall

search process will be enhanced significantly.

Design and Analysis of a Two-lens Beam Shaper

This system represents the most complex presented thusfar, where complexity is

related to the dimensionality of the merit-function space. This problem is inspired by

the system designed, built and tested by Jiang, Shealy and Martin in Ref. 16. The

system has two lens elements, which are designed to shape an incoming Gaussian beam

to an outgoing beam with a uniform irradiance profile. The system expands an 8mm

incoming beam to 12mm. Both incoming and outgoing beams are parallel to the optical

axis. The right surface of the first lens and the left surface of the second lens

 Copyrighted Material 37

Copyright © 1999 Neal C. Evans

All rights reserved

accomplish the irradiance redistribution and beam expansion. In Ref. 16, these shaping

surfaces are highly asperical.

As above, the merit function must contain a term that quantifies the uniformity

of the irradiance profile on an Output Surface. Furthermore, the merit function must

insure that the outgoing rays are parallel to the optical axis and that the radius of the

output beam is some predefined value. The precise nature of this merit function is

similar to those described in the previous problems. The GA is given 12 parameters to

optimize in this problem: 4 6 8, , , , ,c k A A A and 10A for the aspherical lens surface of each

of the two lens in the system. The merit function for this system has the same form as

the one for the Beam Shaper/Projector system outlined in Design and Analysis of a

Beam Shaper/Projector [Eqs. (23)-(25)], save that ‟50‟ in Eq. (23) is „12‟ in this example

(since the radial height of the marginal ray should be 12 mm in this example and not 50

mm). This 12-dimension parameter space is the most complex presented thus far.

Consequently, the optimization time for this problem is significantly longer, taking

some 50 hours on the platforms described above, using the serial processing paradigm.

The GA, nevertheless, found a solution, which is presented in Fig. 12, Fig. 13, Table 4,

and Table 5.

 Copyrighted Material 38

Copyright © 1999 Neal C. Evans

All rights reserved

Lens 1

Lens 2

Fig. 12. Two-lens beam shaper system with ray trace. The right surface of Lens 1 and

the left surface of Len 2 are shaped by the GA.

 Copyrighted Material 39

Copyright © 1999 Neal C. Evans

All rights reserved

Input Profile

Output Profile

 ()

,mm

Fig. 13. Input and Output irradiance profiles for the Two-lens Beam Shaper. The
21 e diameter of the input beam is 16.0 mm. Integrating ()  over the Input Plane

yields 86.9 units. The radius (N) of the Output Plane is 10.7 mm. The mean value of

the profile, u , is 0.242
2rays mm , with a standard deviation of 1.86x10-3 rays/mm2, or

0.8% of u . Integrating this mean value (() constant  u u) over the Output Surface

yields a value of 87.0 units. Energy is conserved, as required in Eq. (13).

 Copyrighted Material 40

Copyright © 1999 Neal C. Evans

All rights reserved

Table 4. Two-lens Shaper System Parameters.

Parameter Value

Wavelength 589.00 nm

Radius of the input beam (Entrance Pupil Diameter) 8.00 mm

Radius of the output aperture 10.7 mm

Glass type for two lens elements CaF2

Index of ambient medium (air) 1.0

Gaussian constant  in Eq. (21) 0.031
2mm

Object distance Infinity

Table 5. Two-lens Shaper Lens Element Parameters

 First Lens Element Second Element

Parameter Left

Surface

Right Surface Left Surface Right

Surface

Thickness 10 mm 150 mm 10 mm 25 mm

Vertex radius (

1 c)

infinity 100.59 mm -100.01 mm infinity

Surface type spherical aspherical aspherical spherical

Conic constant (

k)

 -0.922971 -0.375469

4A 0.843226x10-5 mm 0.617298x10-4 mm

6A -.664541x10-6 mm -.960417x10-7 mm

8A 0.504624x10-8 mm -.164098x10-8 mm

10A 0.274667x10-14 mm 0.687429x10-11 mm

12A -.999878x10-13 mm 0.466018x10-14 mm

Design and Analysis of a Gradient-Index Shaper

The Beam Shaper/Projector problem presented in the previous section provides

an example of a purely continuous merit function. Continuous merit functions can be

solved by a number of different methods, and solving it with a GA is nothing

particularly glamorous. As an example of a more complex problem—one difficult to

 Copyrighted Material 41

Copyright © 1999 Neal C. Evans

All rights reserved

solve using more conventional methods—the GA technique is used to design a Gradient-

Index Shaper, which has a merit function that contain both continuous and discrete

parameters. This problem was solved using a differential-equation design method in a

paper by Wang and Shealy.17 Though Wang was able to produce several perfectly good

solutions, the gradients of the lenses reported in Ref. 17 were determined solely by

solving the differential equations, and no constraints were imposed that required the

indices of refraction of the lenses to correspond to those that can be found in common

glass catalogs. It follows that a challenging problem for the GA would be to create a

laser shaping system with two gradient-index elements as Wang did, but to do so with

the added constraint that the elements can only be chosen from existing glass catalogs.

Obviously, this makes the potential for fabricating the system the more easily realized.

Furthermore, this is an interesting problem from the perspective of the GA since it is

now required to optimize discrete parameters in addition to continuous parameters,

adding several nuances to the coding.

The general layout of the gradient-index shaping system is inspired by Wang‟s

system. Essentially, there are two shaping elements, each of which are made from a

gradient-index glass. The right surface of each shaping element is spherical. The

precise shape of the spherical surface and the thickness for each shaping element are

optimized by the GA. Furthermore, there is a „connector‟ between the two shaping

elements that is set a priori to be Schott BK7 glass type. The „connector‟ in Wang‟s

system matches the base index, 0n , of the two gradient elements (see Fig. 14). This is

necessary to insure that the marginal ray passes undeviated through the system.17 No

such requirement is made for the GA problem, so the glass type of the connector can be

set with caprice. The GA is allowed to choose randomly from the Lightpath gradient-

 Copyrighted Material 42

Copyright © 1999 Neal C. Evans

All rights reserved

Fig. 14. Layout of the gradient-index expander designed by Wang and Shealy (from

Ref. 17). This system provides the inspiration for the Gradient-Index Shaper problem.

 Copyrighted Material 43

Copyright © 1999 Neal C. Evans

All rights reserved

index glass catalog available in CODE V. See CODE V documentation for more details

on this glass catalog. Thus, the GA optimizes the following continuous parameters:

thickness of element 1, curvature of right surface of surface 1, thickness of connector,

thickness of element 2 and curvature of right surface of surface 2. Also, the GA

optimizes the following discrete parameters, Lightpath gradient glass type for surfaces

1 and 2 (four possible types for each surface) and gradient index direction for surface 1

and 2 (may be positive or negative for each respective surface). While the problems

presented thus far have a continuous parameter space, this problem does not. Because

of this, derivative-based methods (e.g. simplex and Damped Least Squares60) are not

applicable.

The merit function for this system is designed with three key features. First, the

merit function includes a term to characterizes the flatness of the output profile, in the

manner as shown in Design and Analysis of a Beam Shaper/Projector. Second, the

merit function includes a term the insures that each ray is perpendicular to the Output

Plane, i.e., a collimated output beam. The form of this term is expressed by the

following function:

2exp (1)    , (26)

where

1

 
N

s

i

i

 . (27)

 Copyrighted Material 44

Copyright © 1999 Neal C. Evans

All rights reserved

s

i in the above equation is the cosine of angle that ray i makes with the optical axis.

The exponent s adjusts the sensitivity of the merit function non-parallel (1) rays.

For this application, s is set at six. If each ray traces through the system is parallel to

the optical axis, then 1  and Eq. (26) is unity. If not, then Eq. (26) is less than one

and reduces the merit function, penalizing the system.

Third, the merit function rewards those systems where the radius (N) of the

Output Plane is close to 8.0 mm. This is expressed in the following function:

2exp 0.01(8)   N
, (28)

where N is the radial height of the marginal ray at the Output Surface. If N is 8.0

mm as desired, then Eq. (28) is unity. If not, then the system is penalized as above. See

APPENDIX A: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A GRADIENT-

INDEX SHAPER, line 101 to see these terms as they appear in the code, expressed as a

complete function. Descriptions of the terms in line 101 are given at the end of

Appendix A. Building the merit function in this manner is intended to produce a

system that resembles the systems in Ref. 17, which makes similarities and differences

more apparent.

To solve this problem, the serial version of the GA is employed and CODE V

calculates the merit function. After a total execution time of about 7 hours, the highest

value of the merit function (the best individual) failed to significantly improve

indicating no better solutions were forthcoming. The final system is shown in Fig. 15

and the shapes of the input and output irradiance profiles, along with consistency

checks, are shown in Fig. 16. Examining this best individual, one finds that the

integrating the irradiance functions, ()  and ()u over the appropriate surfaces

 Copyrighted Material 45

Copyright © 1999 Neal C. Evans

All rights reserved

Lens 2:
LightPath G1SF,

negative gradient

Lens 1:
LightPath G1SF,

positive gradient

Connector

Scale: 1.00

Fig. 15. Gradient-index shaper system with ray trace. The materials for Lens 1 and

Lens 2 were chosen from a catalog of materials by the GA.

 Copyrighted Material 46

Copyright © 1999 Neal C. Evans

All rights reserved

Input Profile

Output Profile

, mm

 ()

Fig. 16. Input and Output irradiance profiles for the Gradient-Index Shaper. The
21 e radius of the input beam is 4.0 mm. Integrating ()  over the Input Plane yields

21.7 units. The radius (N) of the Output Plane is 7.56 mm. The mean value of the

profile, u , is 0.121
2rays mm , with a standard deviation of 4.45x10-3. Integrating this

mean value (() constant  u u) over the Output Surface yields a value of 21.7 units.

Energy is conserved, as required in Eq. (13).

 Copyrighted Material 47

Copyright © 1999 Neal C. Evans

All rights reserved

yields the same value. Energy is conserved as expected. The system satisfies all given

constraints and performs with the necessary features; thus, the GA has indeed solved

the problem. The parameters for the final system are shown in Table 6 and Table 7. It

is interesting to note that the marginal rays converge inside the connector, resulting in

a very long connector length. Such a long connector would be undesirable in any system

intended for manufacture. By referring to Wang‟s system, one notes that the length of

the connector is significantly smaller than the one produced by the GA. This suggests

that adding an additional constraint which limits the length of the connector to some

small value could force the GA to produce a system with collimated marginal rays. The

index of refraction of the connector would also need to be a variable to satisfy the

physical constraint that the marginal ray, defined as the ray that enters at the
21 e

point (4.0 mmN in this case), passes undeviated through the system.

Table 6. Gradient-Index Shaper System Parameters.

Parameter Value

Wavelength 589.00 nm

Radius of the input beam (Entrance Pupil Diameter) 4.00 mm

Radius of the output aperture 7.56 mm

Glass type for two lens elements Lightpath G1SF

Gradient for first lens element positive

Gradient for second lens element negative

Glass type for connector Schott BK1

Index of ambient medium (air) 1.0

Gaussian constant  in Eq. (21) 0.035
2mm

Object distance Infinity

 Copyrighted Material 48

Copyright © 1999 Neal C. Evans

All rights reserved

Table 7. Gradient-Index Shaper Lens Element Parameters

Design and Analysis of a Free-Form GA-Designed GRIN Shaper

While the previous examples establish the GA‟s ability to arrive at solutions for

several well-understood problems, they do not fully harness the creative ability of the

GA method. If the GA were given more flexibility, from choosing the actual number and

types of GRIN elements, rather than just their shapes, could the GA actually produce a

solution in a reasonable amount of time? In searching for a problem to address this

question, one notes that an encumbrance of the GRIN system (based on one developed

by Wang and Shealy17) presented earlier in this work is that it requires a „connector‟

piece. In the Wang and Shealy system (see Fig. 14), this connector allows the marginal

ray to trace parallel to optical axis. The solution found by the GA presented in this

work has all rays focusing within the connector (see Fig. 15), which is an undesirable

feature from a fabrication perspective (the connector may be damaged if a high-power

laser is used). Since this possibility was never considered beforehand, no term in the

merit function was added to penalize solutions where marginal rays focus within the

connector. Though not by design, this illustrates the creative nature of the GA, in the

sense that the GA may find solutions to a given problem that the human designer never

imagined.

 First Lens Element Second Element

Parameter Left

Surface

Right

Surface

Left

Surface

Right Surface

Thickness 7.75 mm 199.9 mm 7.29 mm 25.0 mm

Vertex radius (1 c) infinity -99.58 mm infinity -58.15 mm

Surface type spherical spherical spherical spherical

 Copyrighted Material 49

Copyright © 1999 Neal C. Evans

All rights reserved

Thus, a new problem may be defined: is there a system that shapes an input

beam to a flat profile in manner similar to that of the original Wang and Shealy GRIN

system, but without requiring a connector piece between the lens elements whatsoever?

That is, is there a shaping system that uses GRIN elements separated only by ambient

air? Furthermore, if the GA is no longer limited by specifying so many aspects of the

optical system a priori, such as the actual number of elements present in the system,

can the GA harness this greater flexibility in determining the makeup of the optical

system to solve the problem? To do this, the GA not only must optimize surface shapes

of the GRIN elements and their spacing, but also must determine the actual number of

elements in the solution, up to a certain limit (four, in this case). In essence, to solve

this problem, the GA must do the same things that a human optical designer would.

The number of GRIN elements must be determined, the type of GRIN material for each

element must be picked, and so on. This new type of problem further distinguishes the

GA method from deterministic methods (i.e., those that rely on derivatives and a

smooth, continuous merit function) since the merit function required for this problem is

a complicated mix of discrete and continuous parameters.

The merit function is constructed in a manner similar to the previous problems.

It contains three key terms: one term that measures the uniformity of the output

profile, one term that insures that all rays exit the system parallel to the optical axis

and finally, one term that penalizes systems that do not have the specified radius on the

Output Surface (4 mm, in this case). One unique aspect of this application is the way

that the GA is allowed is select the actual number of elements for each test system.

This variable, eleN , may be one of the following integers: one, two, three or four. An

idiosyncrasy of the particular GA code47 used in these examples is that parameters to be

 Copyrighted Material 50

Copyright © 1999 Neal C. Evans

All rights reserved

optimized are defined by default as 8-bit real numbers. The parameter in the code that

corresponds to eleN (an integer) is (,1)P i (an 8-bit real number), where i refers to the

one of the ten individuals in a generation. For this problem, there are actually 26

parameters to be optimized, and the population size of each generation is 10. Thus, P

is a array with 10 rows and 26 columns. In order to translate (,1)P i into an integer

within the desired range, the limits are set as follows:

0.50 (,1) 4.49 P i ; (29)

and, the following function is used for translation:

 () int (,1)eleN i P i , (30)

where int()a is a function that rounds a to the closest integer. Using Eqs. (29) and (30)

, an integer between and including one and four is chosen, each with equal probability.

It is this method that is used to define discrete parameters for the GA in all

these problems that require them. In this problem, there are eight other discrete

parameters: the GRIN glass types and the GRIN direction for each of the (up to) four

elements. These glass types are selected from a catalog of GRIN elements for a

particular manufacturer in the same manner as in the previous example. See lines 34

and 40 in APPENDIX A: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A

GRADIENT-INDEX SHAPER for an example of this in the code. See Table 8 for a

description of all parameters optimized in this problem. It should be noted that if the

GA chooses less than four elements for a particular individual, the remaining surfaces

are made into dummy surface in the code. For example, if (,1) 3P i , then the following

occurs: first, the left and right surface of element four is set to have an infinite radius of

curvature, i.e. the surfaces are made flat. Then, the thickness of element four is set to

 Copyrighted Material 51

Copyright © 1999 Neal C. Evans

All rights reserved

zero and the glass type is set to air. The net result is that element four has no effect on

the optical system, while the surfaces for element four remained defined for future use,

should they become necessary. This method simplifies coding of the problem and makes

evaluation of the merit function more efficient. See APPENDIX B: CODE SAMPLES

FROM DESIGN AND ANALYSIS OF A FREE-FORM GA-DESIGNED GRIN SHAPER

for example of this in code.

The code was executed on a Sun Ultra 1 170 with 64M of RAM as before. Using

this setup, it took an average of 7.80 seconds for the GA to completely evaluate the

merit function for each of the 10 test systems (individuals) in a generation. The code

was allowed to run until it reached generation number 12,367, resulting in an effective

total run-time of 26.8 hours. The merit function, which is measured in arbitrary units,

peaked at a value of 101.21M . The fact that this value represents the best solution

to the problem can be seen in Fig. 17, where it is clear that bestM asymptotically

approaches a value of about 102 .

The system with a merit function value of 101.21M is represented in Fig. 18.

The system has 3 elements, all with spherical surfaces. Most importantly, this solution

reshapes the Gaussian Input Profile into a irradiance profile with uniform intensity on

the Output Surface. One finds that integrating the Irradiance Profile over the Output

Surface yields 21.9 units, while integrating the specified Irradiance Profile over the

Input Surface yields 21.7 units. As with the Beam Shaper/Projector system, this error

can be attributed to the small deviations from u in the output irradiance profile data

set. Here, u is the mean of ()u , which is defined in Eq. (20). The Input and Output

profiles are shown in Fig. 19. The parameters for the systems are given in Table 9 and

Table 10.

 Copyrighted Material 52

Copyright © 1999 Neal C. Evans

All rights reserved

Table 8. Optimized Parameters for the Free-Form GA-Designed GRIN Shaper

problem.

Para-

meter

Parameter Description Parameter

Type

Parameter

Limits61

1 Number of Elements Discrete 1-4 (integer)

2 Radius of curvature of left surface of Element 1 Continuous -100 to 100

3 Radius of curvature of right surface of Element 1 Continuous -100 to 100

4 Thickness of Element 1 Continuous 1 to 10

5 Distance between Element 1 and Element 2 Continuous 1 to 10

6 GRIN glass type for Element 1 Discrete 1-6 (integer)

7 Positive or Negative GRIN for Element 1 Discrete 0, negative

or 1, positive

8 Radius of curvature of left surface of Element 2 Continuous -100 to 100

9 Radius of curvature of right surface of Element 2 Continuous -100 to 100

10 Thickness of Element 2 Continuous 1 to 10

11 Distance between Element 2 and Element 3 Continuous 1 to 10

12 GRIN glass type for Element 2 Discrete 1-6 (integer)

13 Positive or Negative GRIN for Element 2 Discrete 0, negative

or 1, positive

14 Radius of curvature of left surface of Element 3 Continuous -100 to 100

15 Radius of curvature of right surface of Element 3 Continuous -100 to 100

16 Thickness of Element 3 Continuous 1 to 10

17 Distance between Element 3 and Element 4 Continuous 1 to 10

18 GRIN glass type for Element 3 Discrete 1-6 (integer)

19 Positive or Negative GRIN for Element 3 Discrete 0, negative

or 1, positive

20 Radius of curvature of left surface of Element 4 Continuous -100 to 100

21 Radius of curvature of right surface of Element 4 Continuous -100 to 100

22 Thickness of Element 4 Continuous 1 to 10

23 Distance between Element 4 and Surface 10 (a

dummy surface)

Continuous 1 to 10

24 GRIN glass type for Element 4 Discrete 1-6 (integer)

25 Positive or Negative GRIN for Element 4 Discrete 0, negative

or 1, positive

26 Distance from Surface 10 (a dummy surface) to

the Output Plane

Continuous 1 to 100

 Copyrighted Material 53

Copyright © 1999 Neal C. Evans

All rights reserved

bestM

Generation

Fig. 17. A plot showing the best individual in a generation, bestM , as a function of

generation. bestM is measured in arbitrary units. When bestM „plateaus‟ for a

significant number of generations, it can be assumed that the best solution has been

found.

 Copyrighted Material 54

Copyright © 1999 Neal C. Evans

All rights reserved

 Element 1

Element 2
Element 3

Scale: 1.00

Fig. 18. Raytrace for the Free-Form GA-Designed GRIN Shaper system. The GA

produced a system with 3 elements and no connectors.

 Copyrighted Material 55

Copyright © 1999 Neal C. Evans

All rights reserved

() 

,mm

Input Profile

Output Profile

Fig. 19. Input and Output irradiance profiles for the Free-Form GA-Designed GRIN

Shaper. The
21 e radius of the input beam is 4.0 mm. Integrating ()  over the

Input Plane yields 21.7 units. The radius (N) of the Output Plane is 12.4 mm. The

mean value of the profile, u , is
-2 24.55 10 rays mm , with a standard deviation of

31.70 10 , or 3.7% of u . Integrating this mean value (() constant  u u) over the

Output Surface yields a value of 21.9 units. Energy is conserved as required in Eq. (13).

 Copyrighted Material 56

Copyright © 1999 Neal C. Evans

All rights reserved

Table 9. Free-Form GA-Designed GRIN Shaper Parameters.

Parameter Value

Wavelength 589.00 nm

Radius of the input beam (Entrance Pupil Diameter) 4.00 mm

Radius of the output aperture 12.4 mm

Index of ambient medium (air) 1.0

Gaussian constant  in Eq. (21) 0.035
2mm

Number of Elements 3

Distance from Surface 10 to Output Place (parameter 26 in Table 8) 100 mm

Object distance Infinity

Table 10. Free-Form GA-Designed GRIN Shaper Lens Parameters.

To review, the GA method produced a shaper system that only has spherical

surfaces, requires no connectors and uses GRIN lenses from the catalog of an

established GRIN element manufacturer. The GA solved a problem that would be

difficult to solve using analytical methods or conventional optimization techniques,

since the merit function contains discrete parameters (for example, picking the GRIN

glass type from a pre-defined set of GRIN elements). Furthermore, the GA was

presented with a unique problem that has not been solved before and was allowed a

certain degree of creativity in producing a solution. The result is a three-lens system

 First Element Second Element Third Element

Parameter Left

Surface

Right

Surface

Left

Surface

Right

Surface

Left

Surface

Right

Surface

Thickness,

mm

9.99 10.0 6.77 9.48 4.25 9.71

Vertex radius

(1 c), mm

-61.6 80.4 -12.5 100 87.5 -30.3

Surface type spherical spherical spherical spherical spherical spherical

Glass Type

(UDG C1)62

3 2 1

GRIN

Direction

negative positive negative

 Copyrighted Material 57

Copyright © 1999 Neal C. Evans

All rights reserved

that is wholly the creation of the GA and has a form that could not have been

anticipated before the fact.

 Copyrighted Material 58

Copyright © 1999 Neal C. Evans

All rights reserved

SUMMARY AND CONCLUSIONS

This work starts with the following assumption: there are some problems in

geometrical optics that cannot be solved using either analytical methods, such as the

differential equation method11,13, or conventional computational optimization

techniques, such as the Simplex algorithm.37 There are numerous reasons that

account for this, ranging from merit functions that contain non-continuous parameters

to problems that simply have no solution. To this end, the following hypothesis is

proposed: special machine learning codes--in particular, genetic algorithms--can be

adapted to solve many of these problems. The first step in testing this hypothesis is to

establish that GAs can indeed produce solutions to problems in geometrical optics. This

is done by addressing a few well-understood problems from the literature, which have

been solved by other methods. In addition to establishing a proving ground, these

exercises shed light on the myriad subtle qualities that govern the GA method.

Hopefully, this information can be used to make the GA code run more efficiently and to

determine the limits of its application.

The first two problems presented here, Design and Analysis of a Beam

Shaper/Projector and Design and Analysis of a Two-lens Beam Shaper, both could be

solved by more conventional methods. In fact, the Two-lens Beam Shaper problem has

been solved by Jiang and Shealy via an analytical differential equation method.16 The

GA method indeed produced solutions to these problems, and did so within a reasonable

amount of time. The solution to the Two-lens shaper problem produced by the GA is

 Copyrighted Material 59

Copyright © 1999 Neal C. Evans

All rights reserved

very similar to the one found by Jiang and Shealy. Yet, both of these solutions, in

addition to the solution to the Beam Shaper/Projector problem, require elements with

highly aspherical surfaces. Aspherical surfaces are used in these problems since often

exotic surfaces are required to produce the desired solutions. This greater flexibility

makes finding a solution easier, both for the GA method and analytical methods.

However, choosing aspherical surfaces comes at a price; they are both expensive to

manufacture and difficult to build to precise specifications.

With this in mind, Wang and Shealy endeavored to produce a beam shaping

system similar to Jiang‟s Two-beam shaper but with the additional constraint that only

the solution contains only spherical elements. To compensate for the decreased

flexibility as a result of requiring spherical surface shapes, gradient-index glasses were

chosen for the shaping elements. Using a differential equation design method, Wang

and Shealy produced the desired shaping system.17 While the system performs its

primary function of shaping a Gaussian input beam into a uniform profile on the

Output Surface, it has two undesirable features. First, a connector was added to allow

the marginal ray to pass through the system unfettered by any of the shaping elements.

This requirement is necessary to insure the that radius of the input beam is equal to

that of the output beam. Also, the parameters defining the index of refraction function

for each of the GRIN elements in Wang‟s system were allowed to vary continuously,

resulting in GRIN elements that could not be matched with elements found in

established GRIN manufacturer catalogs. That is, Wang‟s GRIN elements must be

custom fabricated, adding significantly to the cost required to build that system.

To address this issue, the GA was given the task of producing a system similar

to Wang‟s except that the GRIN elements were to be chosen from a predefined set. This

set is simply a catalog of elements from a popular GRIN manufacturer (Lightpath was

 Copyrighted Material 60

Copyright © 1999 Neal C. Evans

All rights reserved

used in this case, though any catalog would have been sufficient). With this constraint,

the problem contains parameters that can only assume certain values, and hence do not

vary smoothly. This aspect makes this problem difficult to solve with methods that rely

on continuous merit functions, which eliminates the differential equation method used

by Wang. This is the first problem where the GA was used to produce a truly unique

solution to a difficult problem. The system found by the GA contains only spherical

surfaces, has GRIN elements chosen by the GA from a catalog and shapes the Gaussian

input beam into one with a uniform irradiance profile on the output surface, as desired.

However, it also has one unanticipated feature. The marginal rays actually focus

within the connector (see Fig. 15). New terms might be added to the merit function to

insure that rays do not focus within the connector, and the entire optimization process

restarted to find a new solution. Rather than follow this course, however, one finds that

the accidental discovery of this feature shows the way to a new, more ambitious

problem: the total elimination of the connector.

In the Free-form GA-designed shaping system, the last problem presented in

this work, the goal was to produce a system that has the following features. First, it

must contain elements with spherical surfaces only. Second, it must contain elements

that are chosen from a GRIN catalog. Third, it must require no connectors and the rays

should not focus within any elements (since such focusing of a high-powered laser could

destroy the element). Finally, of course, it must shape the beam into a uniform profile

over the Output Surface. In presenting the problem to the GA, no assumptions were

made as to the number of elements required to solve the problem. The GA was allowed

to function as a human optical designer would--trying two elements in this system, four

in another, and evaluating the merit function in each case to see what improvements, if

any, resulted. This problem demonstrates more than any other presented here how the

 Copyrighted Material 61

Copyright © 1999 Neal C. Evans

All rights reserved

GA is an example of machine learning. Essentially, information about past successes is

preserved in the best individual of each iteration, and this information persists from

generation from generation. Progress is made, often in small steps, but sometimes in

great leaps (see Fig. 17). The final result is a system not conceived by the human

designer, but a system that, nevertheless, functions as required.

 Future work on this method lies in two areas. First, solution time must be

decreased, which now is on the scale of several hours for the problems considered. This

can be accomplished by a number of methods. Because of the nature of the GA process,

parallel versions of the code should be relatively easy to implement. This is discussed in

detail in Parallelization of the Genetic Algorithm above. Another possibility is to

explore implementation of new heuristic models in the GA driver, such as the Tabu

search.35 The GA driver could easily be scaled to a massively-parallel supercomputers,

but a raytracing package other than CODE V would have to be used to evaluate the

merit function, since there is currently no version of CODE V that runs on

supercomputers. A good possibility is KDP55. The source code for KDP is available from

its developer for a reasonable price.

The second area of work involves applying the GA method to areas other than

geometrical optics. These might include solving problems where the geometric

approximation fails, such as systems that involve diffractive or holographic elements.

To this end, packages other than CODE V would have to be used to evaluate the merit

function, since the geometrical irradiance calculation method developed here neglects

interference effects. One such package is GLAD, a laser diffraction modeling package,

which is developed by Applied Optics Research, 3023 Donee Diego Drive, Escondido,

California. If such a problem were pursued, a new interface would have to be written to

interface the laser modeling package with the GA driver.

 Copyrighted Material 62

Copyright © 1999 Neal C. Evans

All rights reserved

 Any of these are worthwhile projects, since this work demonstrates that the GA

method can solve many problems in optical design and theoretical optics that are

intractable to other methods. Furthermore, the GA method has great flexibility and its

range of applicability is broad. After the merit function is properly defined and an

efficient method of evaluating the merit function is found, adapting the basic GA kernel

to solve the problem at hand follows with ease. In order to solve the problems in this

work, it was necessary to develop an efficient, accurate means of calculating irradiance

profiles over a variety of surfaces. Building this foundation consumed a large portion of

development time for the GA method, but its importance cannot be overstated. The

theoretical underpinnings of this irradiance calculation algorithm is presented in

Computational Methods for Irradiance Calculations via Ray-trace Methods. In any

case, this optimization method provides a means to produce solutions unfettered by

convention or human influence.

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

APPENDIX A: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A GRADIENT-

INDEX SHAPER

 Copyrighted Material 69

Copyright © 1999 Neal C. Evans

All rights reserved

This appendix illustrates how CODE V can be used to evaluate the merit

function for the Gradient-Index system. The code below is written in CODE V macro

language. Not shown in this appendix is the GA driver, which is written in Fortran 77.

See Ref. 47 for more information on the GA driver. To access the GA driver in CODE V,

the GA code was compiled into a library format as specified in the CODE V

documentation. See „User-defined functions‟ in the CODE V manuals for more

information. At line 2, the parameters are defined that provide a communications

nexus between CODE V and the GA driver. The GA is invoked at line 20, where the

parameters defined in line 2 are passed to the GA. The GA interprets the values stored

in the „^fun(200)‟ array, and uses those in its calculations. In turn, the GA populates

the „^par(200,9)‟ array, which defines a new generation to be evaluated in CODE V.

The for..end for loop starting at line 27 and ending at line 111 contains the code that

traces the 200 rays for each of the 10 individuals per generation and, most importantly,

evaluates the merit function for each. The raytrace is done in lines 67-79. The

irradiance profile is calculated in lines 83-92. The precise form of the merit function can

be found in lines 95-105. The first term, „1/^merit,‟ is a value proportional to the

flatness (uniformity) of the output profile. „^nsum‟ is a value related to the angle each

ray traced through the system make with the optical (Z) axis. As each of these

angles approaches 0, „^nsum‟ approaches 1. If „^nsum‟ is one, then it makes no

contribution to the merit function. The last term, „expf(-0.01*((8 - ^r2(200))**2))‟ is less

than one if the radial height of the marginal ray („^r2(200)‟) is some value other than

eight, penalizing the system. Also note how the Gradient glass type is chosen in lines

47-61. This is a unique feature of this particular Gradient-Index application. The

 Copyrighted Material 70

Copyright © 1999 Neal C. Evans

All rights reserved

command „prv‟ at line 48 instructs CODE V to begin a private (user-defined) glass type.

„pwl 589‟ at line 49 indicates that the private glass is valid for wavelength  =589nm.

„UDG C1‟ and „UDG C2‟ are the two discrete parameters that select the GRIN element

from the several available in the CODE V gradient-index catalog. The values are

populated from the variables ^UDGC11 and ^UDGC12, which are set by the GA, in

lines 52 and 53. This same process is repeated to define a private glass type for the

second shaping element in lines 54-58. Finally, the individual glass type for the

shaping elements are set to the two newly defined private glasses in lines 60 and 61.

GA macro: ga.seq.1 (CODE V macro language)

lcl num ^merit ^meritv(10) 1
lcl num ^par(200,9) ^fun(200) ^iv 2
lcl num ^r1(0..200) ^r2(0..200) ^n(0..200) ^srn(0..200) 3
lcl num ^sum ^avg ^eprinc ^raymiss ^nsum 4
lcl num ^i2p ^i2s(0..200) 5
lcl num ^UDGC11 ^UDGC12 ^UDGC21 ^UDGC22 6
 7
out n 8
ver all n 9
exc n 10
 11
^eprinc == (epd)/400. 12
 13
for ^iv -1 1000000 14
 15
if (^iv=0) 16
 ^iv == 2 17
end if 18
 19
usr ^par ^fun ^iv 20
!out y 21
!wri (tim) 22
!wri "__________" 23
!out n 24
 25
 26
for ^c 1 10 27
 28
thi s2 ^par(^c,1) 29
thi s4 ^par(^c,2) 30
thi s3 ^par(^c,3) 31
rdy s3 ^par(^c,4) 32
rdy s5 ^par(^c,5) 33
^UDGC11 == roundf(^par(^c,6)) 34
if (^par(^c,7) > 0) 35
 ^UDGC12 == 1 36
els 37
 ^UDGC12 == -1 38
end if 39
^UDGC21 == roundf(^par(^c,8)) 40
if (^par(^c,9) > 0) 41
 ^UDGC22 == 1 42
els 43
 ^UDGC22 == -1 44
end if 45

 Copyrighted Material 71

Copyright © 1999 Neal C. Evans

All rights reserved

 46
del prv all 47
prv 48
pwl 589 49
'n1' LPT GRADIUM 1.7 50
UDG 51
UDG C1 (^UDGC11) 52
UDG C2 (^UDGC12) 53
pwl 589 54
'n2' LPT GRADIUM 1.7 55
UDG 56
UDG C1 (^UDGC21) 57
UDG C2 (^UDGC22) 58
end 59
gla s2 'n1' 60
gla s4 'n2' 61
 62
^merit == 0 63
^sum == 0 64
^nsum == 1 65
 66
for ^i 0 200 67
 ^r1(^i) == ^i*^eprinc 68
 ^j == raysin(0,0,0.,^r1(^i),0.,0.) 69
 if (^j <> 0) 70
 ^raymiss == 1 71
 els 72
 ^r2(^i) == (y s6) 73
 ^r2(^i) == absf(^r2(^i)) 74
 ^n(^i) == (n s6) 75
 ^nsum == ^nsum * ^n(^i)**6 76
 ^srn(^i) == (srn s6) 77
 end if 78
end for 79
 80
if (^raymiss = 0) 81
 ^a == -logf((PUI))/((PUX)*(EPD)/2.)**2 82
 for ^i 1 200 83
 ^j == ^i-1 84
 ^k == ^i 85
 ^i2p == (^r1(^i)*(^r1(^k)-^r1(^j))*expf(-^a*^r1(^i)**2)*^n(^i))& 86
 /(^r2(^i)*(^r2(^k)-^r2(^j))) 87
 ^i2s(^i) == 88
(^i2p*^srn(^i))/((^n(^i)*^srn(^i))+(sinf(acosf(^n(^i)))*sinf(acosf(^srn(^i))))) 89
 ! ^i2s(^i) == ^i2p*absf(^srn(^i)) 90
 ^sum == ^sum + ^i2s(^i) 91
 end for 92
 ^avg == ^sum/199 93
 94
 for ^i 1 200 95
 ^merit == ^merit + (^i2s(^i) - ^avg)**2 96
 end for 97
 98
 ^merit == sqrtf(^merit/199) 99
 100
 ^meritv(^c) == 1/^merit * expf(-1*((1 - ^nsum)**2)) * expf(-0.01*((8 - 101
^r2(200))**2)) 102
 103
els 104
 ^raymiss == 0 105
 ^meritv(^c) == 0 106
end if 107
 108
^fun(^c) == ^meritv(^c) 109
 110
 111
end for 112
 113
end for 114
 115
ver y 116

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

APPENDIX B: CODE SAMPLES FROM DESIGN AND ANALYSIS OF A FREE-

FORM GA-DESIGNED GRIN SHAPER

 Copyrighted Material 73

Copyright © 1999 Neal C. Evans

All rights reserved

This appendix illustrates how CODE V is used to evaluate the merit function for

the Free-Form GA-Designed GRIN. The code below is written in the CODE V macro

language as in Appendix A. The functionality is similar to that presented in Appendix

A except for several interesting differences. First, the number of elements present in

the system is set at line 34 in the variable „^iEle‟. Then, ^iEle is checked and so that

the appropriate number of surfaces can be nullified where ^iEle<4. For example, if

^iEle=1, the appropriate parameters defining element 1 are set in lines 37-59, while the

surfaces defining the remaining three elements are nullified in lines 60-72.

This sequence also uses a new CODE V raytracing function, „raytra‟, which

appears at line 277. The raytra function offers significantly better performance than

the „raysin‟ function used at line 66 in Appendix A. Furthermore, special check at lines

289-294 insures that rays do not cross within the system, which is an undesired feature

for this problem. As an unexpected consequence, this check offers marginally increased

performance since systems with crossing rays are immediately given a merit function

value of zero. In the code presented in Appendix A, the merit function for systems with

crossing rays would be calculated normally, which led to the focused beam in the

connector for the solution presented in Design and Analysis of a Gradient-Index Shaper.

The merit function is presented at lines 320-321. This merit function is essentially

identical to the one in Appendix A, except for the additional term „expf(-0.1*((4 -

^r2(1))**2))‟. This term was added with the hopes that rays would be pushed from the

center of the output irradiance profile more quickly, in order to arrive at a solution more

efficiently.

GA macro: ga.seq.7 (CODE V macro language)

lcl num ^merit ^meritv(10) 1
lcl num ^par(200,26) ^fun(200) ^iv 2
lcl num ^r1(0..200) ^r2(0..200) ^n(0..200) ^srn(0..200) 3

 Copyrighted Material 74

Copyright © 1999 Neal C. Evans

All rights reserved

lcl num ^sum ^avg ^eprinc ^raymiss ^nsum 4
lcl num ^i2p ^i2s(0..200) 5
lcl num ^UDGC11 ^UDGC12 ^UDGC21 ^UDGC22 6
lcl num ^UDGC211 ^UDGC212 ^UDGC221 ^UDGC222 7
lcl num ^UDGC311 ^UDGC312 ^UDGC321 ^UDGC322 8
lcl num ^UDGC411 ^UDGC412 ^UDGC421 ^UDGC422 9
lcl num ^iEle 10
lcl num ^input(4) ^output(8) 11
 12
out n 13
ver all n 14
exc n 15
 16
^eprinc == (epd)/400. 17
 18
for ^iv -1 1000000 19
 20
if (^iv=0) 21
 ^iv == 2 22
end if 23
 24
usr ^par ^fun ^iv 25
!out y 26
!wri (tim) 27
!wri "__________" 28
!out n 29
 30
 31
for ^c 1 10 32
 33
^iEle == roundf(^par(^c,1)) 34
 35
if (^iEle = 1) 36
 rdy s2 ^par(^c,2) 37
 rdy s3 ^par(^c,3) 38
 thi s2 ^par(^c,4) 39
 thi s3 ^par(^c,5) 40
 ^UDGC11 == roundf(^par(^c,6)) 41
 if (^par(^c,7) > 0) 42
 ^UDGC12 == 1 43
 els 44
 ^UDGC12 == -1 45
 end if 46
 gla s2 47
 gla s4 48
 gla s6 49
 gla s8 50
 del prv all 51
 prv 52
 pwl 589 53
 'n1' LPT GRADIUM 1.7 54
 UDG 55
 UDG C1 (^UDGC11) 56
 UDG C2 (^UDGC12) 57
 end 58
 gla s2 'n1' 59
 rdy s4 9e99 60
 rdy s5 9e99 61
 thi s4 0 62
 thi s5 0 63
 rdy s6 9e99 64
 rdy s7 9e99 65
 thi s6 0 66
 thi s7 0 67
 rdy s8 9e99 68
 rdy s9 9e99 69
 thi s8 0 70
 thi s9 0 71
 thi s10 ^par(^c,26) 72
els if (^iEle = 2) 73
 rdy s2 ^par(^c,2) 74

 Copyrighted Material 75

Copyright © 1999 Neal C. Evans

All rights reserved

 rdy s3 ^par(^c,3) 75
 thi s2 ^par(^c,4) 76
 thi s3 ^par(^c,5) 77
 ^UDGC11 == roundf(^par(^c,6)) 78
 if (^par(^c,7) > 0) 79
 ^UDGC12 == 1 80
 els 81
 ^UDGC12 == -1 82
 end if 83
 ^UDGC211 == roundf(^par(^c,12)) 84
 if (^par(^c,13) > 0) 85
 ^UDGC212 == 1 86
 els 87
 ^UDGC212 == -1 88
 end if 89
 gla s2 90
 gla s4 91
 gla s6 92
 gla s8 93
 del prv all 94
 prv 95
 pwl 589 96
 'n1' LPT GRADIUM 1.7 97
 UDG 98
 UDG C1 (^UDGC11) 99
 UDG C2 (^UDGC12) 100
 pwl 589 101
 'n2' LPT GRADIUM 1.7 102
 UDG 103
 UDG C1 (^UDGC211) 104
 UDG C2 (^UDGC212) 105
 end 106
 gla s2 'n1' 107
 gla s4 'n2' 108
 rdy s4 ^par(^c,8) 109
 rdy s5 ^par(^c,9) 110
 thi s4 ^par(^c,10) 111
 thi s5 ^par(^c,11) 112
 rdy s6 9e99 113
 rdy s7 9e99 114
 thi s6 0 115
 thi s7 0 116
 gla s6 117
 rdy s8 9e99 118
 rdy s9 9e99 119
 thi s8 0 120
 thi s9 0 121
 gla s8 122
 thi s10 ^par(^c,26) 123
els if (^iEle = 3) 124
 rdy s2 ^par(^c,2) 125
 rdy s3 ^par(^c,3) 126
 thi s2 ^par(^c,4) 127
 thi s3 ^par(^c,5) 128
 ^UDGC11 == roundf(^par(^c,6)) 129
 if (^par(^c,7) > 0) 130
 ^UDGC12 == 1 131
 els 132
 ^UDGC12 == -1 133
 end if 134
 ^UDGC211 == roundf(^par(^c,12)) 135
 if (^par(^c,13) > 0) 136
 ^UDGC212 == 1 137
 els 138
 ^UDGC212 == -1 139
 end if 140
 ^UDGC311 == roundf(^par(^c,18)) 141
 if (^par(^c,19) > 0) 142
 ^UDGC312 == 1 143
 els 144
 ^UDGC312 == -1 145

 Copyrighted Material 76

Copyright © 1999 Neal C. Evans

All rights reserved

 end if 146
 147
 gla s2 148
 gla s4 149
 gla s6 150
 gla s8 151
 del prv all 152
 prv 153
 pwl 589 154
 'n1' LPT GRADIUM 1.7 155
 UDG 156
 UDG C1 (^UDGC11) 157
 UDG C2 (^UDGC12) 158
 'n2' LPT GRADIUM 1.7 159
 UDG 160
 UDG C1 (^UDGC211) 161
 UDG C2 (^UDGC212) 162
 pwl 589 163
 'n3' LPT GRADIUM 1.7 164
 UDG 165
 UDG C1 (^UDGC311) 166
 UDG C2 (^UDGC312) 167
 end 168
 gla s2 'n1' 169
 rdy s4 ^par(^c,8) 170
 rdy s5 ^par(^c,9) 171
 thi s4 ^par(^c,10) 172
 thi s5 ^par(^c,11) 173
 gla s4 'n2' 174
 rdy s6 ^par(^c,14) 175
 rdy s7 ^par(^c,15) 176
 thi s6 ^par(^c,16) 177
 thi s7 ^par(^c,17) 178
 gla s6 'n3' 179
 rdy s8 9e99 180
 rdy s9 9e99 181
 thi s8 0 182
 thi s9 0 183
 gla s8 184
 thi s10 ^par(^c,26) 185
els 186
 rdy s2 ^par(^c,2) 187
 rdy s3 ^par(^c,3) 188
 thi s2 ^par(^c,4) 189
 thi s3 ^par(^c,5) 190
 ^UDGC11 == roundf(^par(^c,6)) 191
 if (^par(^c,7) > 0) 192
 ^UDGC12 == 1 193
 els 194
 ^UDGC12 == -1 195
 end if 196
 ^UDGC211 == roundf(^par(^c,12)) 197
 if (^par(^c,13) > 0) 198
 ^UDGC212 == 1 199
 els 200
 ^UDGC212 == -1 201
 end if 202
 ^UDGC311 == roundf(^par(^c,18)) 203
 if (^par(^c,19) > 0) 204
 ^UDGC312 == 1 205
 els 206
 ^UDGC312 == -1 207
 end if 208
 ^UDGC141 == roundf(^par(^c,24)) 209
 if (^par(^c,25) > 0) 210
 ^UDGC412 == 1 211
 els 212
 ^UDGC412 == -1 213
 end if 214
 215
 216

 Copyrighted Material 77

Copyright © 1999 Neal C. Evans

All rights reserved

 gla s2 217
 gla s4 218
 gla s6 219
 gla s8 220
 del prv all 221
 prv 222
 pwl 589 223
 'n1' LPT GRADIUM 1.7 224
 UDG 225
 UDG C1 (^UDGC11) 226
 UDG C2 (^UDGC12) 227
 pwl 589 228
 'n2' LPT GRADIUM 1.7 229
 UDG 230
 UDG C1 (^UDGC211) 231
 UDG C2 (^UDGC212) 232
 pwl 589 233
 pwl 589 234
 'n3' LPT GRADIUM 1.7 235
 UDG 236
 UDG C1 (^UDGC311) 237
 UDG C2 (^UDGC312) 238
 pwl 589 239
 'n4' LPT GRADIUM 1.7 240
 UDG 241
 UDG C1 (^UDGC411) 242
 UDG C2 (^UDGC412) 243
 end 244
 gla s2 'n1' 245
 rdy s4 ^par(^c,8) 246
 rdy s5 ^par(^c,9) 247
 thi s4 ^par(^c,10) 248
 thi s5 ^par(^c,11) 249
 prv 250
 pwl 589 251
 end 252
 gla s4 'n2' 253
 rdy s6 ^par(^c,14) 254
 rdy s7 ^par(^c,15) 255
 thi s6 ^par(^c,16) 256
 thi s7 ^par(^c,17) 257
 gla s6 'n3' 258
 rdy s8 ^par(^c,20) 259
 rdy s9 ^par(^c,21) 260
 thi s8 ^par(^c,22) 261
 thi s9 ^par(^c,23) 262
 gla s8 'n4' 263
 thi s10 ^par(^c,26) 264
end if 265
 266
 267
^merit == 0 268
^sum == 0 269
^nsum == 1 270
 271
!for ^i 0 200 272
^i == 200 273
unt 274
 ^r1(^i) == ^i*^eprinc 275
 ^input(1)==0; ^input(2)==^r1(^i); ^input(3)==0; ^input(4)==0 276
 ^j == raytra(0,0,0,^input,^output) 277
 if (^j <> 0) 278
 ^raymiss == 1 279
 ^i == 0 280
 els 281
 !^r2(^i) == (y s11) 282
 ^r2(^i) == ^output(2) 283
 ^r2(^i) == absf(^r2(^i)) 284
 !^n(^i) == (n s11) 285
 ^n(^i) == ^output(6) 286
 ^nsum == ^nsum * ^n(^i)**6 287

 Copyrighted Material 78

Copyright © 1999 Neal C. Evans

All rights reserved

 ^srn(^i) == (srn s11) 288
 if ^i < 200 289
 if ^r2(^i) > ^r2(^i+1) 290
 ^raymiss == 1 291
 ^i == 0 292
 end if 293
 end if 294
 end if 295
!end for 296
 ^i == ^i-1 297
end unt (^i < 0) 298
 299
if (^raymiss = 0) 300
 ^a == -logf((PUI))/((PUX)*(EPD)/2.)**2 301
 for ^i 1 200 302
 ^j == ^i-1 303
 ^k == ^i 304
 ^i2p == (^r1(^i)*(^r1(^k)-^r1(^j))*expf(-^a*^r1(^i)**2)*^n(^i))& 305
 /(^r2(^i)*(^r2(^k)-^r2(^j))) 306
 ^i2s(^i) == 307
(^i2p*^srn(^i))/((^n(^i)*^srn(^i))+(sinf(acosf(^n(^i)))*sinf(acosf(^srn(^i))))) 308
 ! ^i2s(^i) == ^i2p*absf(^srn(^i)) 309
 ^sum == ^sum + ^i2s(^i) 310
 end for 311
 ^avg == ^sum/199 312
 313
 for ^i 1 200 314
 ^merit == ^merit + (^i2s(^i) - ^avg)**2 315
 end for 316
 317
 ^merit == sqrtf(^merit/199) 318
 319
 ^meritv(^c) == 1/^merit * expf(-1*((1 - ^nsum)**2)) * expf(-0.01*((8 - 320
^r2(200))**2))* expf(-0.1*((4 - ^r2(1))**2)) 321
 322
els 323
 ^raymiss == 0 324
 ^meritv(^c) == 0 325
end if 326
 327
^fun(^c) == ^meritv(^c) 328
 329
 330
end for 331
 332
end for 333
 334
ver y 335

Copyrighted Material

Copyright © 1999 Neal C. Evans

All rights reserved

APPENDIX C: CODE SAMPLES FROM THE FORTRAN GENETIC ALGORITHM

DRIVER

 Copyrighted Material 80

Copyright © 1999 Neal C. Evans

All rights reserved

This appendix illustrates how many of the GA techniques actually are coded. As

mentioned in Appendix A, the GA driver is written in Fortran 77 and compiled into an

object as specified in the CODE V manual. The subroutine in this object called

„USERSUB‟ (as required by CODE V) is than instatiated when the appropriate

command is issued in a CODE V macro sequence (see line 20 in Appendix A and line 25

in Appendix B). The variables used to pass information to and from the GA driver and

CODE V must be defined appropriately in both the GA driver and in the CODE V

macro sequence. In the applications presented in this work, three such variables were

used: „parentv‟, an array containing the values for all parameters to be optimized for

each system in a generation (or step); „funcvalv‟, an array containing the values of the

merit functions for each system in a generation; and „iv‟, an integer indicating the

generation number. These variables can be seen in lines 1-2 below.

Fundamental to the GA process is the ability to encode real numbers into

strings, which are the genetic material for a system. The code used to encode and

decode the parameters into and from strings is shown in lines 5-71. Also, two important

operators, „crossover‟ and „mutate‟ are coded in lines 72-194. Finally, the Micro-GA

code, which checks for „stagnancy‟ among adjacent populations, is shown in lines 195-

246. The Micro-GA function allows for small populations sizes (usually 10 members),

which is important for these applications since evaluation of the merit function is so

time-consuming. It should be noted that the code presented below is only a small part

of the entire Fortran GA driver, since the entire code set is quite large. Contact the

author for a complete copy of the GA driver.

 Copyrighted Material 81

Copyright © 1999 Neal C. Evans

All rights reserved

GA driver: ga164.f (Fortran 77)

subroutine USERSUB (parentv, funcvalv, iv)

 REAL*8 parentv(indmax,nparmax),funcvalv(indmax),iv

 INTEGER*4 res

c###

 subroutine decode(i,array,iarray)

c

c This routine decodes a binary string to a real number.

c

 implicit double precision (a-h,o-z)

 save

c

 include 'params.f'

 common / ga2 / nparam,nchrome

 common / ga5 / g0,g1,ig2

 dimension array(indmax,nparmax),iarray(indmax,nchrmax)

 dimension g0(nparmax),g1(nparmax),ig2(nparmax)

c

 l=1

 do 10 k=1,nparam

 iparam=0

 m=l

 do 20 j=m,m+ig2(k)-1

 l=l+1

 iparam=iparam+iarray(i,j)*(2**(m+ig2(k)-1-j))

 20 continue

 array(i,k)=g0(k)+g1(k)*dble(iparam)

 10 continue

c

 return

 end

c

c###

 subroutine code(j,k,array,iarray)

c

c This routine codes a parameter into a binary string.

c

 implicit double precision (a-h,o-z)

 save

c

 include 'params.f'

 common / ga2 / nparam,nchrome

 common / ga5 / g0,g1,ig2

 dimension array(indmax,nparmax),iarray(indmax,nchrmax)

 dimension g0(nparmax),g1(nparmax),ig2(nparmax)

c

c First, establish the beginning location of the parameter string of

c interest.

 istart=1

 do 10 i=1,k-1

 istart=istart+ig2(i)

 10 continue

c

c Find the equivalent coded parameter value, and back out the binary

c string by factors of two.

 m=ig2(k)-1

 if (g1(k).eq.0.0) return

 iparam=nint((array(j,k)-g0(k))/g1(k))

 do 20 i=istart,istart+ig2(k)-1

 iarray(j,i)=0

 Copyrighted Material 82

Copyright © 1999 Neal C. Evans

All rights reserved

 if ((iparam+1).gt.(2**m)) then

 iarray(j,i)=1

 iparam=iparam-2**m

 endif

 m=m-1

 20 continue

c write(3,*)array(j,k),iparam,(iarray(j,i),i=istart,istart+ig2(k)-1)

c

 return

 end

c###

 subroutine crosovr(ncross,j,mate1,mate2)

c

c Subroutine for crossover between the randomly selected pair.

 implicit double precision (a-h,o-z)

 save

c

 include 'params.f'

 dimension parent(indmax,nparmax),child(indmax,nparmax)

 dimension iparent(indmax,nchrmax),ichild(indmax,nchrmax)

c

 common / ga2 / nparam,nchrome

 common / ga3 / parent,iparent

 common / ga7 / child,ichild

 common /inputga/ pcross,pmutate,pcreep,maxgen,idum,irestrt,

 + itourny,ielite,icreep,iunifrm,iniche,

 + iskip,iend,nchild,microga,kountmx

c

 if (iunifrm.eq.0) then

c Single-point crossover at a random chromosome point.

 call ran3(1,rand)

 if(rand.gt.pcross) goto 69

 ncross=ncross+1

 call ran3(1,rand)

 icross=2+dint(dble(nchrome-1)*rand)

 do 50 n=icross,nchrome

 ichild(j,n)=iparent(mate2,n)

 if(nchild.eq.2) ichild(j+1,n)=iparent(mate1,n)

 50 continue

 else

c Perform uniform crossover between the randomly selected pair.

 do 60 n=1,nchrome

 call ran3(1,rand)

 if(rand.le.pcross) then

 ncross=ncross+1

 ichild(j,n)=iparent(mate2,n)

 if(nchild.eq.2) ichild(j+1,n)=iparent(mate1,n)

 endif

 60 continue

 endif

 69 continue

c

 return

 end

c

c###

 subroutine mutate

c

 implicit double precision (a-h,o-z)

 save

c

 include 'params.f'

 Copyrighted Material 83

Copyright © 1999 Neal C. Evans

All rights reserved

 dimension nposibl(nparmax)

 dimension child(indmax,nparmax),ichild(indmax,nchrmax)

 dimension g0(nparmax),g1(nparmax),ig2(nparmax)

 dimension parmax(nparmax),parmin(nparmax),pardel(nparmax)

c

 common / ga1 / npopsiz,nowrite

 common / ga2 / nparam,nchrome

 common / ga5 / g0,g1,ig2

 common / ga6 / parmax,parmin,pardel,nposibl

 common / ga7 / child,ichild

 common /inputga/ pcross,pmutate,pcreep,maxgen,idum,irestrt,

 + itourny,ielite,icreep,iunifrm,iniche,

 + iskip,iend,nchild,microga,kountmx

c

c This subroutine performs mutations on the children generation.

c Perform random jump mutation if a random number is less than pmutate.

c Perform random creep mutation if a different random number is less

c than pcreep.

 nmutate=0

 ncreep=0

 do 70 j=1,npopsiz

 do 75 k=1,nchrome

c Jump mutation

 call ran3(1,rand)

 if (rand.le.pmutate) then

 nmutate=nmutate+1

 if(ichild(j,k).eq.0) then

 ichild(j,k)=1

 else

 ichild(j,k)=0

 endif

 if (nowrite.eq.0) write(6,1300) j,k

 if (nowrite.eq.0) write(24,1300) j,k

 endif

 75 continue

c Creep mutation (one discrete position away).

 if (icreep.ne.0) then

 do 76 k=1,nparam

 call ran3(1,rand)

 if(rand.le.pcreep) then

 call decode(j,child,ichild)

 ncreep=ncreep+1

 creep=1.0

 call ran3(1,rand)

 if (rand.lt.0.5) creep=-1.0

 child(j,k)=child(j,k)+g1(k)*creep

 if (child(j,k).gt.parmax(k)) then

 child(j,k)=parmax(k)-1.0*g1(k)

 elseif (child(j,k).lt.parmin(k)) then

 child(j,k)=parmin(k)+1.0*g1(k)

 endif

 call code(j,k,child,ichild)

 if (nowrite.eq.0) write(6,1350) j,k

 if (nowrite.eq.0) write(24,1350) j,k

 endif

 76 continue

 endif

 70 continue

 write(6,1250) nmutate,ncreep

 write(24,1250) nmutate,ncreep

c

 1250 format(/' Number of Jump Mutations =',i5/

 + ' Number of Creep Mutations =',i5)

 Copyrighted Material 84

Copyright © 1999 Neal C. Evans

All rights reserved

 1300 format('*** Jump mutation performed on individual ',i4,

 + ', chromosome ',i3,' ***')

 1350 format('*** Creep mutation performed on individual ',i4,

 + ', parameter ',i3,' ***')

c

 return

 end

c

c###

 subroutine gamicro(i,npossum,ig2sum,ibest)

c

c Micro-GA implementation subroutine

c

 implicit double precision (a-h,o-z)

 save

c

 include 'params.f'

 dimension parent(indmax,nparmax),iparent(indmax,nchrmax)

 dimension ibest(nchrmax)

c

 common / ga1 / npopsiz,nowrite

 common / ga2 / nparam,nchrome

 common / ga3 / parent,iparent

c

c First, check for convergence of micro population.

c If converged, start a new generation with best individual and fill

c the remainder of the population with new randomly generated parents.

c

c Count number of different bits from best member in micro-population

 icount=0

 do 81 j=1,npopsiz

 do 82 n=1,nchrome

 if(iparent(j,n).ne.ibest(n)) icount=icount+1

 82 continue

 81 continue

c

c If icount less than 5% of number of bits, then consider population

c to be converged. Restart with best individual and random others.

 diffrac=dble(icount)/dble((npopsiz-1)*nchrome)

 if (diffrac.lt.0.05) then

 do 87 n=1,nchrome

 iparent(1,n)=ibest(n)

 87 continue

 do 88 j=2,npopsiz

 do 89 n=1,nchrome

 call ran3(1,rand)

 iparent(j,n)=1

 if(rand.lt.0.5) iparent(j,n)=0

 89 continue

 88 continue

 if (npossum.lt.ig2sum) call possibl(parent,iparent)

 write(6,1375) i

 write(24,1375) i

 endif

c

 1375 format(//'%%%%%%% Restart micro-population at generation',

 + i5,' %%%%%%%')

c

 return

 end

 Copyrighted Material 63

Copyright © 1999 Neal C. Evans

All rights reserved

LIST OF REFERENCES

1. Pablo Neruda, Twenty Love Poems and a Song of Despair (Chronicle Books, San

Francisco, 1993) p. 17.

2. Or, using more conventional optics terminology, a multi-dimensional „merit

function‟ which quantifies the worth of an optical system in terms of the various

parameters which define the system.

3. M. Gell-Mann, The Quark and the Jaguar (W.H. Freeman, New York, 1994) Chap.

20, p. 312.

4 . D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning (Addison-Wesley, Reading, MA, 1989) Chap 1, p. 1-6.

5 . B. P. Buckles and F. E. Petry, Genetic Algorithms (IEE Computer Society Press,

Los Alamitos, CA, 1992) p. 1.

6. D. E. Goldberg, p. 7.

7. J. Bengtsson, “Kinoform-only Gaussian-to-rectangle beam shaper for a

semiconductor laser,” Appl. Opt. 35, 3807-3814 (1996).

8. C. Han, Y. Ishii, and K. Murata, “Reshaping collimated laser beams with

Gaussian profile to uniform profiles,” Appl. Opt. 22, 3644-3647 (1983).

9. X. Tan, B. Gu, G. Yang, and B. Dong, “Diffractive phase elements for beam

shaping: a new design method,” Appl. Opt. 34, 1314-1320 (1995).

10. F. M. Dickey and S. C. Holswade, “Gaussian laser beam profile shaping,” Opt.

Eng. 35 3285-3295 (1996).

11. P. W. Rhodes and D. L. Shealy, “Refractive optical systems for irradiance

redistribution of collimated radiation: their design and analysis,” Appl. Opt. 19,

3545-3553 (1980).

12. D. Shafer, “Gaussian to flat-top intensity distributing lens,” Opt. Laser Technol.

14, 159-160 (1982).

13. P. H. Malyak, “Two-mirror unobscured optical system for reshaping the irradiance

redistribution of a laser beam,” Appl. Opt. 31, 4377-4383 (1992).

 Copyrighted Material 64

Copyright © 1999 Neal C. Evans

All rights reserved

14. N. C. Evans and D. L. Shealy, “Design And Optimization Of An Irradiance

Profile-Shaping System With A Genetic Algorithm Method,” Appl. Opt. 37, 5216-

5221 (1998).

15. M. Kuittinen, P. Vahimaa, M. Honkanen, and J. Turunen, ”Beam shaping in the

nonparaxial domain of diffractive optics,” Appl. Opt. 36, 2034-2041 (1997).

16. W. Jiang, D. L. Shealy, J. C. Martin, “Design and testing of a refractive reshaping

system,” in Current Developments in Optical Design and Optical Engineering III,

Robert E. Fischer; Warren J. Smith, eds., Proc. SPIE 2000, 64-75 (1993).

17. C. Wang and D. L. Shealy, “Design of gradient-index lens systems for laser beam

reshaping,” Appl. Opt. 32, 4763-4769 (1993).

18. E. Betensky, “Postmodern lens design,” Opt. Eng. 32, 1750-1756 (1993).

19. K. Nemoto, T. Nayuki, T. Fujii, N. Goto, and Y. Kanai, “Optimum control of the

laser beam intensity profile with a deformable mirror,” Appl. Opt. 36. 7689-7695

(1997).

20. J. H. McDermit and T. E. Horton, “Reflective Optics for Obtaining Prescribed

Irradiative Distributions from Collimated Sources,” Appl. Opt. 13, 1444-1450

(1974).

21. V. Oliker, L. Prussner, D. L. Shealy and S. Mirov, “Optical Design of a two-mirror

symmetrical reshaping system and its application in superbroadband color center

laser,” in Current Developments in Optical Design and Optical Engineering IV,

Robert E. Fischer; Warren J. Smith, eds., Proc. SPIE 2263, 10-18 (1994).

22. T. Dresel, M. Beyerlein and J. Schwider, “Design of computer generated beam-

shaping holograms by iterative finite-element mesh adaptation,” Appl. Opt. 35,

6865-6874 (1996).

23. P. Mouroulis and J. Macdonald, Geometrical Optics and Optical Design, Oxford

University Press, New York (1997).

24. M. Born and E. Wolf, Principles of Optics, Fifth Edition, Pergamon Press, New

York (1975).

25. W.T. Welford, Aberrations of the Symmetrical Optical System, Academic Press,

New York (1974).

26. G.A. Deschamps, ``Ray Techniques in Electromagnetics,'' Proc. IEEE 60.9, 1022-

1035 (1972).

 Copyrighted Material 65

Copyright © 1999 Neal C. Evans

All rights reserved

27. D. Shealy, “Geometrical Methods,” in Laser Beam Shaping Theory and

Techniques, Fred M. Dickey; Scott C. Holswade, eds. (in press, Marcel Decker, NY,

2000).

28. S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction, and Confinement

of Optical Radiation (Academic Press, Orlando, 1984), p. 49.

29. A.K. Ghatak and K. Thyagarajan, Contemporary Optics (Plenum Press, New York,

1980), p. 24.

30. F.A. Jenkins and H.E. White, Fundamentals of Optics (McGraw-Hill Book

Company, Inc., New York, 1957), p. 481.

31. Born and Wolf, p. 115.

32. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical

Recipes in Fortran 77: The Art of Scientific Computing (Cambridge U.P.,

Cambridge, U.K., 1992) Chap. 10, p. 387-388.

33. Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained

Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, NJ,

1983).

34. Brent, R.P., Algorithms for Minimization without Derivatives (Prentice-Hall,

Englewood Cliffs, NJ, 1983).

35. L. B. Morales, ``Scheduling a bridge club by tabu search,'' Mathematics Magazine

70, 287-290 (1997).

36. W. H. Press, p. 436-437.

37. G. B. Dantzig, Linear Programming and Extensions (Princeton U.P., Princeton, N.

J., 1963.

38. T. Etzion and P.R.J. Ostergand, “Greedy and Heuristic Algorithms for Codes and

Colorings,” IEEE Transactions on Information Theory 44, 382-388 (1988).

39. R.H.J.M. Otten and L.P.P.P. van Ginneken, The Annealing Algorithm (Kluwer,

Boston, 1989).

40. R. R. Brooks, S. S. Iyengar and J. Chen, “Self-Calibration of a Noisy Mulitple-

Sensor System with Genetic Algorithms,” in Self-Calibrated Intelligent Optical

Sensors and Systems, Anbo Wang, ed., Proc. SPIE 2594, 20-38 (1996).

41. H. Kim, Y. Hayashi and K. Nara, “An Algorithm for Thermal Unit Maintenance

Scheduling through Combined Use of GA, SA and TS,” IEEE Transactions on

Power Systems 12, 329-335 (1197).

 Copyrighted Material 66

Copyright © 1999 Neal C. Evans

All rights reserved

42. F. S. Wen and C. S. Chang, “Tabu Search Approach to Alarm Processing in Power

Systems,” IEEE Proceedings: Generations, Transmission and Distribution 144, 31-

38 (1997).

43. H. J. Jensen, Self-Organized Criticality: Emergent Complex Behavior in Physical

and Biological Systems (Cambridge U. P., New York, 1998) p 34-71.

44. OSLO is a registered trademark of Sinclair Optics, Inc., 6780 Palmyra Road,

Fairport, NY, 14450.

45. ZEMAX is a registered trademark of Focus Software, Inc., P.O. Box 18228,

Tucson, Arizona, 85731.

46. CODE V is a registered trademark of Optical Research Associates, 3280 E.

Foothill Blvd., Pasadena, CA, 91107.

47. The GA code is based on ga164.f, D.L. Carroll's FORTRAN Genetic Algorithm

Driver. See http://www.staff.uiuc.edu/~carroll/ga.html to download ga164.f, along

with documentation and useful information on its implementation. One may find

several sites related to ga164.f by using it as a keyword on popular search engines.

Ga164.f is based on a Micro-GA method. See Ref. 49 for more information on

Micro-GAs.

48. See the Naval Research Lab‟s GA archive, http://www.aic.nrl.navy.mil/galist/, for a

comprehensive source of GA codes in several different languages and

implementations. This site also is the home of a very useful mailing list in which

one may find the current state of the art in GA techniques and theory.

49. K. Krishnakumar, “Micro-Genetic Algorithms for Stationary and Non-Stationary

Function Optimization,” SPIE: Intelligent Control and Adaptive Systems 1196,

(1989).

50. D. E. Goldberg, p. 21.

51. P. Kraft, N. R. Harvey, S. Marshall, “Parallel genetic algorithms in the

optimization of morphological filters,” J. of Electronic Imaging 6, 504-516 (1997).

52. A. B. Djuriši, J. M. Elazar, A. D. Raki, “Simulated-annealing-based genetic

algorithm for modeling the optical constants of solids,” Appl. Opt. 36, 7097-

7103 (1997).

53. C. H. Still, “Portable Parallel Computing via the MPI-2 Message-Passing

Standard,”Computers in Physics 8, 533-8 (1994).

http://www.staff.uiuc.edu/~carroll/ga.html

 Copyrighted Material 67

Copyright © 1999 Neal C. Evans

All rights reserved

54. D. W. Walker, “The Design of a Standard Message-Passing Interface for

Distributed Memory Concurrent Computers,” Parallel Computing 20, 657-673

(1994).

55. It should be noted that there is at least one optical design package for which the

source code is available. KDP can be downloaded in compiled form for no charge

from http://www.kdpoptics.com. The full source for KDP is available for a

reasonable price. Conceivably, one could use KDP for the ray-tracing aspects of

the merit function evaluation, and modify the KDP source code so it can be

compiled in a supercomputer environment.

56. K. M. Baker, D. L. Shealy, W. Jiang, “Directional light filters: three-dimensional

azo dye formed micro-honeycomb images with optical resins,” in Diffractive and

Holographic Optics Technology II, I. Cindrich; S. H. Lee, eds., Proc. SPIE 2404,

144-158 (1995).

57. Ken Baker of Optimetrix Co. provided the initial specifications and requirements

for this system. Optimetrix is located at 13659 Victory Blvd., Van Nuys, CA,

91401. The final has been fabricated by Optimetrix as part of a holographic

projection system. See K. M. Baker, “Highly Corrected Submicrometer Grid

Patterning on Curved Surfaces,” Appl. Opt. 38, 339-351 (1999).

58. P. Mouroulis and J. Macdonald, Geometrical Optics and Optical Design (Oxford

Univ. Press, New York, 1997) Chap. 9, p. 248-250.

59. W. Jiang, Application of a Laser Beam Profile Reshaper to Enhance Performance of

Holographic Projection Systems (Univ. of Ala. at Birmingham Dept. of Physics,

Birmingham, 1993) Chap 2, p.30-32.

60. W. H. Press, p. 425-436.

61. For continuous parameters, numbers are real and are in units of mm.

62. „UDG C1‟ is a CODE V variable that refers to „User-defined glass constant 1‟. C1

corresponds to a particular GRIN in the CODE V Lightpath catalog. The CODE V

Lightpath GRIN glass catalog can be obtained from Optical Research Associates.46

http://www.kdoptics.com/

	Main_Text_Start
	ZEqnNum577641
	ZEqnNum813569
	ZEqnNum339645
	ZEqnNum976623
	ZEqnNum624313
	ZEqnNum749247
	ZEqnNum827878
	ZEqnNum848970
	ZEqnNum434144
	ZEqnNum863830
	ZEqnNum662881
	ZEqnNum484587
	ZEqnNum379265
	ZEqnNum577631
	ZEqnNum577642
	ZEqnNum508300
	ZEqnNum212942
	ZEqnNum813538
	ZEqnNum577611
	ZEqnNum199495
	ZEqnNum577614
	ZEqnNum577615
	ZEqnNum577616
	ZEqnNum930975
	ZEqnNum577606
	ZEqnNum577607
	ZEqnNum577608
	ZEqnNum577612
	ZEqnNum199494
	ZEqnNum577621
	ZEqnNum577609
	ZEqnNum577613
	ZEqnNum199493
	ZEqnNum921478
	ZEqnNum813541
	ZEqnNum813540
	ZEqnNum577618
	ZEqnNum199497
	ZEqnNum577620
	ZEqnNum684218
	ZEqnNum869314
	ZEqnNum813539
	ZEqnNum577610
	ZEqnNum813543
	ZEqnNum577619
	ZEqnNum760377
	ZEqnNum760376
	ZEqnNum921479
	ZEqnNum544342
	ZEqnNum085083
	ZEqnNum971008
	ZEqnNum770813
	ZEqnNum906921
	ZEqnNum275116
	ZEqnNum577617
	ZEqnNum199496
	ZEqnNum813542
	ZEqnNum989944
	ZEqnNum912669
	End_Of_Doc

