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ABSTRACT 
 
Geometrical optics - the laws of reflection and refraction, ray tracing, conservation of energy within a bundle of rays, and the 
condition of constant optical path length - provides a foundation for design of laser beam shaping systems. This paper 
explores the use of machine learning techniques, concentrating on genetic algorithms, to design laser beam shaping systems 
using geometrical optics.  Specifically, a three-element GRIN laser beam shaping system has been designed to expand and 
transform a Gaussian input beam profile into one with a uniform irradiance profile.  Solution to this problem involves the 
constrained optimization of a merit function involving a mix of discrete and continuous parameters.  The merit function 
involves terms that measure the deviation of the output beam diameter, divergence, and irradiance from target values. The 
continuous parameters include the distances between the lens elements, the thickness, and radii of the lens elements.  The 
discrete parameters include the GRIN glass types from a manufacturer's database, the gradient direction of the GRIN 
elements (positive or negative), and the actual number of lens elements in the system (one to four).    
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1. INTRODUCTION 
Geometrical optics has been used for a number of years to design optical systems which shape the irradiance profile of a laser 
beam.1, 2, 3, 4, 5, 6 These geometrical methods of beam shaping have generally involved solving differential equations for the 
contours of the optics.  Wang and Shealy7 have presented a method to compute the GRIN profiles of a two-lens beam shaping 
system.  However, their GRIN profiles can not be associated with available GRIN glass types, which motivated the current 
work to determine whether a genetic algorithm based optimization method can be used to design a laser beam shaping system 
with catalog GRIN elements.  The present work uses the design equations of the geometrical methods1 of laser beam shaping 
as a basis for constructing a merit function used during the GA optimization of GRIN beam shaping systems. 

Recent developments of machine learning techniques, such as genetic algorithms (GAs), have transformed the prospect of 
solving difficult optimization problems.  Though there are a number of variations of GAs, they all share a central theme: their 
search strategy borrows concepts from natural selection and genetics.8  These techniques endow GAs with several unique 
features, as described by Goldberg:9   

• GAs work with a coding of the parameter set, not with the parameters themselves;   
• GAs search from a population of points, not a single point;   
• GAs use payoff …[merit function] information only, not derivatives or other auxiliary knowledge; 
• GAs use probabilistic transitions rules, not deterministic rules. 

These characterizations suggest using GAs to design to laser beam shaping systems when analytical methods are difficult to 
apply or other optimization techniques are inefficient or fail to yield good solutions.  Many conventional optimization 
techniques work only within a continuous parameter space, since they are driven by first- and second-order derivatives.  The 
ability to choose from discrete parameters is a particularly powerful feature of the GA, relative to other optimization codes. 
As a first step, Evans and Shealy10, 11 have shown that GA optimization methods can determine the shapes of one- or two-
aspherical lenses used in laser beam shaping systems.    
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In this paper, GAs are used to design two laser beam shaping systems.  The first system contains two plano-aspheric lenses 
and is used to expand and transform a Gaussian input beam into a top-hat output beam.  This system is similar to one 
designed, fabricated and tested by Jiang, Shealy, and Martin.12, 13, 14  The second problem solves not only for the attributes of 
the lens elements, but also for the GRIN glass types from a catalog and the number of elements used in the beam shaping 
system.15  It is interesting to note that the GRIN glass type and the number of elements in a beam shaping system can only 
have discrete finite values.   Section 2 describes a specific the merit function that has been used with a genetic algorithm 
optimization method to design several laser beam shaping systems.  Section 3 describes application of the genetic algorithm 
optimization method to design a two plano-aspheric lens system and a three element GRIN beam shaping system.  
 

2. GENETIC ALGORITHM OPTIMIZATION METHOD∗ 
 

This section links geometrical optics into the merit function used to design laser beam shaping systems via GA optimization.  
Developing a fast, accurate means of computing the irradiance (energy per unit area per unit time) profile at different 
locations within an optical system is important to using GAs to design laser beam shaping systems. Conservation of radiant 
energy within a bundle of rays16 is used to develop a computational procedure for evaluating the irradiance within an optical 
system. If no energy is dissipated by the system, then the total energy entering the system is given by:  
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where is the irradiance function on the output surface O , and  is the irradiance function on the input planeI , 
which is assumed to be Gaussian in the paper: 
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The input beam waist is .  See Figure 1 for illustration of the terms in Eq. (1).   
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where  is an element of length on the output surface and is equal to idS cos out
i id χΡ  for the configuration shown in Figure 

1.  To evaluate , N rays are traced through the system.  For these applications, N  gives adequate resolution 
for the input and output profiles.  Each ray enters parallel to the optical (Z-) axis at a specified height, , where the set of ρ  
are distributed equally across the radius of the input plane according to the following function: 
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Each ray will exit the system and strike a point on the output surface at Ρ , as shown in Figure 1.  Assuming i

1i i id ρ ρ ρ −= −
                              

, then Eq. (3) can be written in terms of these discrete variables as 

                             
∗ See Appendix of the paper for a brief summary of the GA terminology, optimization algorithms, and methods. 
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Subscripts are introduced into these equations to emphasize the numerical nature of the solution the irradiance along a ray, 
Eq.(5). Equations (2) and (5), along with the ray trace array, provide an accurate means of calculating the beam irradiance 
profile over any reasonable surface.  The accuracy of this method has been verified by calculating the profiles for several 
benchmark systems.12 Now, a merit function can be developed based on Eq. (5) which allows the GA to distinguish between 
systems with uniform and non-uniform output intensity profiles.   

 

Figure 1.  Geometrical configuration of beam expander with input and output surfaces. 

The merit function is used by the GA optimization algorithms to distinguish between “good” systems and “bad” systems.  
The GA will find those systems with the highest value of the merit function. The merit function for these applications 
contains terms that quantify the diameter, the degree of collimation, and the uniformity of the irradiance profile of the output 
beam.  To accomplish these objectives, the following merit function is defined: 
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In Eq.(7), Ρ  is the radial height (as measured from the optical axis) of the marginal ray on the output surface, and  Ρ  

is the desired radius of the output beam.  The exponential function is chosen since one wants the merit function to peak 
sharply at P , which indicates a “good” system during the GA optimization process. (

N

N

Target

Target= Ρ  See Ref. 15 for a detailed 

discussion this GA optimization process and construction of a suitable merit function to use when designing laser beam 
shaping systems.)  The exponential accomplishes this nicely, but functions other than the exponential may have been chosen. 
The coefficient s  determines the sensitivity of the merit function to the exit pupil radius constraint.  That is, the smaller the 
value of s , the broader the exponent function becomes.  In this example, s  was set to 0.01. This value has been adjusted on 
occasion while the GA is executing to insure that the pupil radius constraint is satisfied.  The merit function M also includes 
a term that favors each ray being perpendicular to the Output Plane (i.e., a collimated output beam).  In Eq. (8),  is 

the cosine of angle 
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iγ  that ray i  makes with the optical axis.  The exponent Q adjusts the sensitivity of the merit function to 

nonparallel [ ] rays.  For this application, Q is set at six.  If each ray is parallel to the optical axis, then 

.  If not, then Eq. (8) is less than one and reduces the merit function, which penalizes the set of system 

configuration parameters during the GA optimization process.  The merit function 
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function,  over N  points on the output surface.  As the beam profile on the output surface becomes more uniform, 

the denominator of Eq. (9) approaches zero, and M  increases substantially.  
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In summary, the merit function rewards those systems which tend to increase the value of M and penalize systems with 
smaller values of M as the GA optimization searches throughout both the discrete and continuous parameter space.   

 
3. APPLICATIONS 

 
The application of a GA generally must satisfy two prerequisites.  First, one must identify those parameters that 
fundamentally characterize the system.  Second, one must identify those features of a system which best describe the fitness 
(or “merit”) of the system.  This could be one particular attribute, such as focal length, or, on the other extreme, could involve 
the blending of many different attributes, each with different weights and measures of influence.  Using the methods 
summarized above, one can adapt the GA to solve a range of problems.  The beam shaping systems presented below illustrate 
how to build a method of using GAs to design simple to more complex beam shaping systems.  Design of two beam shaping 
systems is discussed below - a two-plano-aspheric lens system and a three-GRIN lens system.  

 
3.1.  TWO PLANO-ASPHERIC LENS BEAM SHAPING SYSTEM 
 
This problem is inspired by the system designed, built, and tested by Jiang, Shealy, and Martin in Refs.12, 13, and 14.  The 
system has two plano-aspheric lenses, which shape an incoming Gaussian beam into an outgoing beam with a uniform 
irradiance profile, as shown in Figure 2.  The system also expands the beam from 8 mm ( )Nρ to 12 mm ( .  Both 

incoming and outgoing beams are parallel to the optical axis.  The right surface of the first lens and the left surface of the 
second lens accomplish the beam expansion, collimation, and irradiance redistribution.  In Ref. 12, the lens shaping surfaces 
are aspherical, described the optics surface equation: 
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where  is the sag of the surface;  is the radial height; c  is the curvature of the surface; k  is the conic constant and 
 are aspherical deformation coefficients. 
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The choice of Eq. (10) for the surface sag allows the GA great flexibility in determining the surface contour of the two 
aspheric lens surfaces, depending on the number of 
deformation coefficients included in the optimization 
process.  Furthermore, it is desirable to provide the GA 
with a large (multidimensional) parameter space to 
explore, since this is where GAs are especially powerful.  
The GA starts by randomly choosing, within 
predetermined constraints, values for the seven surface-
shape parameters to be optimized.  In each generation, 
ten individuals are produced.  The parameters for each 
individual are passed to a ray-tracing routine (CODE V17 

is used for ray tracing in this application) where N  rays 
are traced, and then, the value of the merit function is 
calculated for each individual system as described in 
section 2.  The GA is given 14 parameters to optimize in 
this problem: c  and A  for the 

two aspheric surfaces of each lens in the system.   
6 8 14, , , , ,k A A A A 0, 12

 

Lens 1 

Lens 2 

Figure 2.  Two-lens beam shaper system with ray trace 
The GA code was executed simultaneously 
on four Sun Sparcs, all running Solaris 2.6.  
The constraints were modified in real-time 
so that each instantiation of the GA code 
could search different regimes of the 
parameter space.  Once it became apparent 
that a particular regime contained better 
solutions, the constraints were narrowed on 
all machines to search that regime more 
thoroughly.  Also, when one machine found 
an individual that was substantially 
superior to the best individuals on the other 
three machines, the code on the three other 
machines was reinitialized using a restart 
file from the machine with the superior 
individual.  This amounts to a primitive 
form of parallel processing. Total 
processing time was not rigorously 
recorded but was on the order of 50 hours. 

Figure 3. Input and output irradiance profiles for the two-lens beam shaper. 

The fastest machine of the four, a Sun Ultra 1-170 with 64M of RAM, found the best individual.  The search was stopped 
when no significantly better individuals were found over a period of several hours.  The GA found a solution, which is 
presented in Table 1 and Table 2.  Figure 3 compares the irradiance profiles of the input and output beam for this lens system.  
Integrating input beam profile, , over the input plane yields 86.9 units.  The mean value of the output beam profile, ( )σ ρ u = 
0.242 rays per mm2, with a standard deviation of 1.86 x 10-3 rays/mm2, or 0.8% of u .  Integrating this mean value of the 
output irradiance over a plane perpendicular to the optical axis yields a value of 87.0 units.  Therefore, conservation of energy 
is maintained for the designed beam shaping system to within the convergence accepted in this GA optimization. 



 

Table 1.  Two-lens Shaper System Parameters 

Parameter Value 
Wavelength 589.00 nm 
Radius of the input beam (entrance pupil diameter) 8.00 mm 
Radius of the output aperture 10.7 mm 
Glass type for two lens elements CaF2 
Index of ambient medium (air) 1.0 

Gaussian constant 2
Nρ2 in Eq. (2) 0.031 mm  2−

Object distance Infinity 
 

Table 2.  Two-lens Shaper Lens Element Parameters 

 First lens element Second element 
Parameter Left surface Right surface Left surface Right 

surface 
Thickness 10 mm 150 mm 10 mm 25 mm 

Vertex radius (1 ) c Infinity 100.59 mm -100.01 mm infinity 

Surface type spherical Aspherical Aspherical spherical 

Conic constant (k )  -0.922971 -0.375469  

4A (mm-3)  0.843226 x 10-5 0.617298 x 10-4  

6A (mm-5)  -.664541 x 10-6 -.960417 x 10-7  

8A (mm-7)  0.504624 x 10-8 -.164098 x 10-8  

10A (mm-9)  0.274667 x 10-14 0.687429 x 10-11  

12A (mm-11)  -.999878 x 10-13 0.466018 x 10-14  

 
 

3.2. THREE GRIN ELEMENT BEAM SHAPING SYSTEM 
 

Although the previous example illustrates the GA’s ability to arrive at solutions for a well-understood problem, the first 
example does not fully harness the creative ability of the GA method.  If the GA were given more flexibility, including 
choosing the actual number and types of GRIN elements, for example, rather than just their shapes, could the GA actually 
produce a solution in a reasonable amount of time?  In searching for a problem to address this question, there are two 
encumbrances of the GRIN system developed by Wang and Shealy.7   First, their GRIN beam shaping system requires a 
connector piece of glass to permit the marginal ray to trace parallel to optical axis, and then, their GRIN profiles can not be 
associated with available glass types.  Evans has shown11, 15 that GA optimization can find catalog glasses for the GRIN 
elements of the beam shaping system considered by Wang and Shealy.  However, the resulting connector element is long and 
allows rays to focus within the connector, that is an undesirable feature from a cost and fabrication perspective, since the 
connector could be damaged if a high-power laser is used.   

Thus, a new problem may be defined: is there a system that shapes an input Gaussian beam to a top-hat beam profile in 
manner similar to that of the original Wang and Shealy GRIN system, but without requiring a connector piece between the 
GRIN elements?  That is, is there a shaping system that uses GRIN elements separated only by ambient air?  Furthermore, if 
the GA is no longer limited by specifying so many aspects of the optical system a priori, such as the actual number of 



elements present in the system, can the GA harness this greater flexibility in determining the makeup of the optical system to 
solve the problem?  To do this, the GA not only must optimize surface shapes of the GRIN elements and their spacing, but 
also must determine the actual number of elements in the solution, up to a certain limit (four, in this case).  In essence, to 
solve this problem, the GA must do the same things that a human optical designer would.  The number of GRIN elements 
must be determined, the type of GRIN material for each element must be picked, and so on.  This new type of problem 
further distinguishes the GA method from deterministic methods (i.e., those that rely on derivatives and a smooth, continuous 
merit function) since the merit function required for this problem is a complicated mix of discrete and continuous parameters. 

The merit function is constructed in a similar manner as described in section 2.  It contains three key terms: one term that 
measures the uniformity of the output profile, one term that insures that all rays exit the system parallel to the optical axis, 
and finally, one term that penalizes systems that do not have the specified radius on the output surface (4 mm, in this case).  
One unique aspect of this application is the way that the GA is allowed is select the actual number of elements for each test 
system.  This variable, N , may be one of the following integers: one, two, three, or four.  An idiosyncrasy of the 
particular GA code

Element
18 used in these examples is that parameters to be optimized are defined by default as 8-bit real numbers.  

The parameter in the code that corresponds to N  (an integer) is P i  (an 8-bit real number), where i  refers to the 
one of the ten individuals systems in a generation.  For this problem, there are actually 26 parameters to be optimized, and the 
population size of each generation is 10.  Thus, P  is a array with 10 rows and 26 columns.  In order to translate P i  into 
an integer within the desired range, the limits are set as follows: 

Element
( ,1)

( ,1)

0.50 ( ,1) 4.49P i≤ ≤ ; (11) 

and, the following function is used for translation: 
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where  is a function that rounds a  to the closest integer.  Using Eqs. (11) and (12), an integer between and including 
one and four is chosen, each with equal probability. 

int( )a

It is this method that is used to define discrete parameters for the GA in all cases that require them.  In this problem, there are 
eight other discrete parameters: the GRIN glass types and the GRIN direction for each of the (up to) four elements.  These 
glass types are selected from four LightPath gradient glass types.19  See lines 34 and 40 in Appendix A of Ref. 15 for an 
example of this coding.  See  Table 3 for a description of all parameters optimized in this problem.  It should be noted that if 
the GA chooses less than four elements for a particular individual, the remaining surfaces are made into dummy surface in 
the code.  For example, if P i , then the following occurs: first, the left and right surface of element four is set to 
have an infinite radius of curvature (i.e., the surfaces are made flat).  Then, the thickness of element four is set to zero and the 
glass type is set to air.  The net result is that element four has no effect on the optical system, while the surfaces for element 
four remained defined for future use, should they become necessary.  This method simplifies coding of the problem and 
makes evaluation of the merit function more efficient.  See Appendix B of Ref 15 for an example of this in code. 

( ,1) 3=

The code was executed on a Sun Ultra 1 170 with 64 M of RAM as before.  Using this setup, it took an average of 7.80 
seconds for the GA to completely evaluate the merit function for each of the 10 test beam shaping systems (individuals) in a 
generation.  The code was allowed to run until it reached generation number 12,367, resulting in an effective total run-time of 
26.8 hours.  The merit function, which is measured in arbitrary units, peaked at a value of .  The fact that this 
value represents the best solution to the problem can be seen in Figure 4, where it is clear that M  asymptotically 

approaches a value of about 102 . The system with a merit function value of M  is represented in Figure 5.  The 
system has three elements, all with spherical surfaces.  Most importantly, this solution reshapes the Gaussian input profile 
into a irradiance profile with uniform intensity on the output surface.  The input and output profiles are shown in Figure 6.  
The parameters for the systems are given in Table 4 and Table 5.  The mean value of the output irradiance shown in Figure 6 
is 

101.21M =
best

101.21=

u = 4.55 x 10-2 rays per mm2 with a standard deviation of 1.70 x 10-3 or 3.7% of u .  Integrating this mean value of the 
irradiance over the output plane yields 21.9 units.  Similarly, integrating the ( )σ ρ  over the input plane yields 21.7 units.  
Therefore, conservation of energy is maintained for this GRIN beam shaping system to within the convergence accepted by 
this GA optimization. 



To review, the GA method produced a GRIN beam shaping system that only has spherical surfaces, requires no connectors, 
and uses GRIN lenses from a catalog of an established GRIN manufacturer.  The GA solved a problem that would be difficult 
to solve using analytical methods or conventional optimization techniques, since the merit function contains discrete 
parameters (for example, picking the GRIN glass type from a predefined set of GRIN elements).  Furthermore, the GA was 
presented with a unique problem that has not been solved before and was allowed a certain degree of creativity in producing a 
solution.  The result is a three-element system that is wholly the creation of the GA and has a form that could not have been 
anticipated before the fact. 

 

Table 3.  Optimized Parameters for the Free-form GA-Designed GRIN Shaper Problem. 

Para-
meter 

Parameter description Parameter type Parameter 
limits20 

1 Number of elements Discrete 1-4 (integer) 
2 Radius of curvature of left surface of Element 1 Continuous -100 to 100 
3 Radius of curvature of right surface of Element 1 Continuous -100 to 100 
4 Thickness of Element 1 Continuous 1 to 10 
5 Distance between Element 1 and Element 2 Continuous 1 to 10 
6 GRIN glass type for Element 1 Discrete 1-6 (integer) 
7 Positive or negative GRIN for Element 1 Discrete 0, negative or 1, 

positive 
8 Radius of curvature of left surface of Element 2 Continuous -100 to 100 
9 Radius of curvature of right surface of Element 2 Continuous -100 to 100 

10 Thickness of Element 2 Continuous 1 to 10 
11 Distance between Element 2 and Element 3 Continuous 1 to 10 
12 GRIN glass type for Element 2 Discrete 1-6 (integer) 
13 Positive or Negative GRIN for Element 2 Discrete 0, negative or 1, 

positive 
14 Radius of curvature of left surface of Element 3 Continuous -100 to 100 
15 Radius of curvature of right surface of Element 3 Continuous -100 to 100 

16 Thickness of Element 3 Continuous 1 to 10 
17 Distance between Element 3 and Element 4 Continuous 1 to 10 
18 GRIN glass type for Element 3 Discrete 1-6 (integer) 
19 Positive or negative GRIN for Element 3 Discrete 0, negative or 1, 

positive 
20 Radius of curvature of left surface of Element 4 Continuous -100 to 100 
21 Radius of curvature of right surface of Element 4 Continuous -100 to 100 

22 Thickness of Element 4 Continuous 1 to 10 
23 Distance between Element 4 and Surface 10 (a 

dummy surface) 
Continuous 1 to 10 

24 GRIN glass type for Element 4 Discrete 1-6 (integer) 
25 Positive or negative GRIN for Element 4 Discrete 0, negative or 1, 

positive 
26 Distance from Surface 10 (a dummy surface) to the 

output plane 
Continuous 1 to 100 
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Figure 4.  A plot showing the best individual in a generation as a function of generation. 

 
 
 
 

 Element 1

Element 2
Element 3

Scale: 1.00 

 
Figure 5.  Ray trace for the free-form GA-designed GRIN shaper system. 
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Figure 6.  Input and output irradiance profiles for the free-form GA-designed GRIN Shaper. 

Table 4.  Free-form GA-Designed GRIN Shaper Parameters 

Parameter Value 
Wavelength 589.00 nm 
Radius of the input beam (entrance pupil diameter) 4.00 mm 
Radius of the output aperture 12.4  mm 
Index of ambient medium (air) 1.0 

Gaussian constant 2
Nρ2 in Eq. (2) 0.035  2mm−

Number of elements 3 
Distance from Surface 10 to output plane (parameter 26 in Table 3) 100 mm 
Object distance Infinity 

 

Table 5.  Free-form GA-Designed GRIN Shaper Lens Parameters 

 
 First element Second element Third element 
Parameter Left 

surface 
Right 
surface 

Left surface Right 
surface 

Left surface Right 
surface 

Thickness, mm 9.99 10.0 6.77 9.48 4.25 9.71 

Vertex radius 
(1 ), mm c

-61.6 80.4 -12.5 100 87.5 -30.3 

Surface type spherical spherical spherical Spherical spherical spherical 

Glass Type 
(UDG C1)21 

3  2  1  

GRIN Direction negative  positive  negative  



 
4. SUMMARY AND CONCLUSIONS 

 

This work started with the following assumption: there are some problems in geometrical optics that cannot be solved using 
either analytical methods, such as the differential equation method,2, 12, 13, 14 or conventional computational optimization 
techniques, such as the simplex algorithm.22  There are numerous reasons that account for this, ranging from merit functions 
that contain non-continuous parameters to problems that simply have no solution.  To this end, the following hypothesis was 
proposed: special machine learning codes - in particular, GAs - can be adapted to solve some of these problems.  The first 
step in testing this hypothesis is to establish that GAs can indeed produce solutions to problems in geometrical optics.  This 
was done by addressing a few well-understood problems from the literature, which have been solved by other methods.  In 
addition to establishing a proving ground, these exercises shed light on the myriad subtle qualities that govern the GA 
optimization method.   

The first problem (two-plano-aspheric beam shaper) presented here has been solved by more conventional methods  by Jiang, 
Shealy, and Martin via an analytical differential equation method. 2, 12, 13, 14  The GA method indeed produced solutions to 
these problems and did so within a reasonable amount of time.  Yet, this solution requires highly aspherical lens surfaces.  
This greater flexibility makes finding a solution easier, both for the GA method and analytical methods.  However, choosing 
aspherical surfaces comes at a price; they are both expensive to manufacture and difficult to build to precise specifications. 

With this in mind, Wang and Shealy7 endeavored to produce a beam shaping system similar to Jiang, Shealy, and Martin’s12 
two-beam shaper but with the additional constraint that only the solution contains only spherical elements.  To compensate 
for the decreased flexibility as a result of requiring spherical surface shapes, axial gradient-index glasses were used for the 
shaping elements.  Using a differential equation design method, Wang and Shealy produced the desired shaping system.  
While the system performs its primary function of shaping a Gaussian input beam into a uniform profile on the output 
surface, it has an undesirable feature.  Namely, the parameters defining the index of refraction function for each of the GRIN 
elements were allowed to vary continuously, resulting in GRIN elements that could not be matched with elements found in 
established GRIN manufacturer catalogs.  That is, the GRIN elements must be custom fabricated, adding significantly to the 
cost required to build that system. 

To address this issue, the GA was given the task of producing a system similar to the system designed by Wang and Shealy, 
except that the GRIN elements were to be chosen from a predefined set.11, 15  This set is simply a catalog of elements from a 
popular GRIN manufacturer.  LightPath19 was used in this case, though any catalog would have been sufficient.  With this 
constraint, the problem contains parameters that can only assume certain values and, hence, do not vary smoothly.  This 
aspect makes this problem difficult to solve with methods that rely on continuous merit functions, which eliminates the 
differential equation method used by Wang and Shealy.  This is the first problem where the GA was used to produce a truly 
unique solution to a difficult problem and is described in Ref. 15.  The system found by the GA contains only spherical 
surfaces, has GRIN elements chosen by the GA from a catalog, and shapes the Gaussian input beam into one with a uniform 
irradiance profile on the output surface, as desired.  However, it also has one unanticipated feature.  The marginal rays 
actually focus within the connector.  New terms might be added to the merit function to insure that rays do not focus within 
the connector, after which the entire optimization process could be restarted to find a new solution.  Rather than follow this 
course, however, one finds that the accidental discovery of this feature shows the way to a new, more ambitious problem: the 
total elimination of the connector. 

In the free-form GA-designed laser beam shaping system discussed in section 3.2, the goal was to produce a system that has 
the following features.  First, it must contain elements with spherical surfaces only.  Second, it must contain elements that are 
chosen from a GRIN catalog.  Third, it must require no connectors, and the rays should not focus within any elements (since 
such focusing of a high-powered laser could destroy the element).  Finally, of course, it must shape the beam into a uniform 
output profile. In presenting the problem to the GA, no assumptions were made as to the number of elements required to 
solve the problem.  The GA was allowed to function as a human optical designer would - trying two elements in this system, 
four in another, and evaluating the merit function in each case to see what improvements, if any, resulted.  This problem 
demonstrates more than any other presented here how the GA is an example of machine learning.  Essentially, information 
about past successes is preserved in the best individual of each iteration, and this information persists from generation from 
generation.  Progress is made, often in small steps, but sometimes in great leaps (see Figure 4). The final result is a system 
not conceived by the human designer, but a system that, nevertheless, functions as required. 

 



  APPENDIX: SUMMARY OF GA OPTIMIZATION  

Generally, the idea behind optimization is that one has some function  that can be evaluated easily.  This function is 
expressed in terms of several variables, which may be discrete or continuous.  One wishes to find the values of these 
variables for which  assumes either a maximum or minimum value. The difficulty of the problem is related to whether one 
is searching for local extrema, of which there may be many, or the global extrema, which represent the absolute best 
solutions.  The complexity of the problem is related to the number of variables which make up , in addition to the ease with 
which  can be calculated.

f

f

f
f 23  The greater the complexity of the problem, the longer it takes to arrive at a solution.  Thus, 

search algorithms that arrive at solutions quickly are to be coveted, which is evident by the voluminous amount of research 
regarding the subject present in the literature.24, 25  In this work, the GA search method is presented as one of these treasured 
methods, but it should be noted that other algorithms exist which may produce similar, if not superior performance.  Two 
popular alternative methods are simulated annealing and the Tabu search.26  A discussion of the theory of optimization as it 
applies to optics is presented in Ref. 15. 

Though there are myriad optimization techniques to choose from, methods such as GAs and simulated annealing are of particular 
interest because of their ability to solve combinatorial minimization problems.  The key feature of such problems is that one or more 
of the parameters that make up the merit function (which is to be maximized) are discrete, in the sense that they only can assume 
particular values from a predefined set of allowable values.  Thus, instead of an N-dimensional space made up of N continuous 
parameters, one is presented with a parameter space whose complexity is factorially large—so large in fact that it cannot be 
completely explored.27   Without a continuous merit function, concepts such as “downhill” and “uphill” lose their meaning and 
other optimization techniques, such as the simplex method,28 can no longer be applied.  For example, the GRIN beam shaping 
system presented in Section 3.2 was optimized using only the glass types for the lens elements from a fixed set of GRIN 
materials found in a manufacturer’s catalog.  It is here that GAs and simulating annealing techniques excel, though they also 
can be applied to problems that are purely continuous.  In the literature, there are numerous examples of problems solved 
using these techniques,29, 30 as well as research that compares the performance of one or more of these methods on the same 
class of problems.31, 32, 33, 34  It seems that of the three methods discussed here, no one method is necessarily more efficient 
than the others, though it does appear that GAs and the Tabu search tend to arrive at solutions more quickly than simulated 
annealing methods, at least in the papers cited here. 

It should be noted that several commercial optical design and analysis packages implement these techniques in their 
optimization routines to varying degrees.  OSLO,35 for example, uses an “adaptive simulating annealing” method.  ZEMAX36 

and CODE V17 also contain proprietary global optimization methods.  The problem with these implementations, among other 
things, is that the merit functions in these packages are oriented towards imaging systems (ZEMAX, however, allows for 
user-defined merit functions computed by macros or an external programming interface), limiting one’s ability to manipulate 
the merit function for one’s own purpose.  Also, since the makers of these packages keep their optimization codes 
proprietary, one’s ability to customize those routines is all but eliminated.   

Since GAs are based on a biological paradigm, much of the GA nomenclature is borrowed directly from evolutionary 
biology.  The reader may find it useful to have some of this jargon expressed in terms more familiar to the optics community.  
As discussed above, GAs produce a finite number of test solutions to a problem.  Individually, these solutions are referred to 
as “organisms” (or just “individuals”), and collectively as a “generation.”  A “generation” is essentially an iteration.  With 
each iteration, the merit function, M, is evaluated for each member of a generation.  There may be a few as five or as many as 
hundreds of individuals per generation, depending on the code used and how it is configured.  For the applications explored 
here, there are typically five or ten individuals in a generation.  A new generation of child systems is produced from the 
genetic material of the parent generation (the specifics of this process are described  below). An individual’s genetic code 
represents a particular system prescription.  For example, in the two-lens beam shaper/expander example presented in section 
3.1, seven parameters, that collectively define one surface of the beam-shaping element, are concatenated into a string (i.e., 
genetic code).  Thus, with each iteration, five or ten new system prescriptions are produced and their respective merit 
functions evaluated. 

The GA method developed here is based on a micro-GA code.18, 37, 38  Micro-GAs have several features that distinguish them 
from other GA codes.  The most prominent of these features is the fact that micro-GAs can operate efficiently with small 
generation sizes (on the order of 10 individuals per generation).  This is important for the applications presented here, since 
evaluation of the merit function for each individual is a very time-consuming process.  The micro-GA is able to work with 
small generation sizes by checking for “stagnancy” in each generation it produces.  Stagnancy is determined by taking the 



average value of the merit function for all the individuals in a generation, ( )M t , and comparing it to average merit functions 

values for N  parent generations, ( 1), ( 2), ..., ( )M t M t N− − −M t .  If these values do not differ significantly (a 

parameter which can be set in the micro-GA, and is usually “tweaked” at the beginning of a problem to produce the most 
efficient code), then the population is defined as stagnant.  Essentially, when stagnancy is detected, the code assumes that the 
GA is stuck in a local minima and attempts to add some randomness to the process.  When such a situation arises, the GA 
picks the best of the individuals in a generation, kills the remaining and replaces them with new, randomly selected 
individuals in the child generation. 

“Reproduction” is defined as producing a child generation of new individuals from the genetic material of a parent 
generation.  The individual with the highest value of M in a particular generation is most likely to have its genetic material 
passed on to the next generation.  The “genetic material” for a particular individual is defined by concatenating the binary 
value for each parameter to be optimized into a binary string (consists of only ones and zeros).  See Figure 7 for an example.  
New generations are created by a “crossover operator”, which swaps chunks of genetic material (strings) between two or 
more individuals in a generation.  With the Micro-GA code, crossovers are done in a manner that maintains individual 
“alleles”.  An allele is the particular value that a parameter assumes, expressed in string format.39  When a crossover occurs, 
the strings that represent alleles are not broken into pieces, but are transferred from one individual to another intact.  Another 
operation the GA performs is “mutation.”  Here, the GA randomly selects one or several bits in an allele, and changes the 
state of these bits.  Since the string is binary, this amounts to operating on the bit with “Not” (not 0 = 1, not 1 = 0).  Mutation 
adds a built-in randomness to the GA method, which helps the GA avoid local minima.  Because of the stagnancy-checking 
feature it employs, the Micro-GA allows one to avoid the constant tweaking of GA parameters (e.g., crossover and mutation 
rates) which is often necessary with conventional routines.   

 

 
Figure 7.  Example of the genetic material for a single individual.  Values (Real*8) for each parameter are converted into binary strings, which are 
in turn concatenated into one long string, the genetic material for that individual (from Ref.10).  Individual alleles (the values that surface  
coefficients, such as,  curvature, conic constant, and aspherical deformation constants, expressed in binary form) are kept intact when 
crossovers occur. 
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